
Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Transitioning from Monolithic to Microservices

Architecture in Airline IT Systems

Hemanth Kumar

MSc in cs

Abstract

Airline IT systems are critical for managing high-demand operations such as reservations, flight

scheduling, inventory, and customer services. However, monolithic architectures have increasingly

become a bottleneck due to their lack of scalability and adaptability. This paper investigates the

transition to microservices architecture, focusing on its modular structure, ability to handle

independent services, and flexibility in deployments. Through an analysis of patterns, methodologies,

tools, and case studies, this paper provides a practical guide for airlines to migrate effectively.

Additionally, it identifies key challenges, including system complexity and data consistency, while

outlining best practices for successful implementation.

1. Introduction

Airline IT systems, traditionally built on monolithic architectures, were designed to address operational

demands with a singular structure. As airlines scale and diversify their offerings, these monolithic systems

face significant limitations:

• Scalability: A monolith requires scaling the entire application, even if only one component demands

additional resources.

• Fault Isolation: A failure in one component often leads to system-wide outages.

• Deployment Bottlenecks: Updating one part of the system necessitates redeploying the entire

application, increasing downtime risks.

Microservices architecture divides the monolithic system into smaller, loosely coupled services. For airlines,

this transition enables quicker rollouts of new features like loyalty programs, payment gateways, and multi-

channel reservations. It also supports modular experimentation and growth.

2. Background and Related Work

2.1 Evolution of Airline IT Systems

Airline IT systems have undergone significant transformations over the decades, driven by advancements in

technology and the increasing complexity of the airline industry. Initially designed to address basic

operational needs such as ticketing and flight scheduling, these systems evolved to accommodate global

expansion, diverse customer expectations, and regulatory demands.

Early Systems: Centralized Monoliths

The earliest airline IT systems, dating back to the mid-20th century, were centralized, monolithic

applications designed to manage flight reservations and inventory. These systems were implemented on

mainframes and used legacy programming languages like COBOL. Examples include the Semi-

https://www.ijirmps.org/

Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 2

Automated Business Research Environment (SABRE) system, which American Airlines introduced in the

1960s. This system revolutionized ticketing and reservations but was highly centralized, limiting flexibility.

Growth of Integrated Monolithic Systems

As airlines expanded globally, monolithic systems were enhanced to handle additional features such as

loyalty programs, baggage handling, and flight operations. These integrated systems provided centralized

control but were rigid and challenging to modify. Adding new features or scaling specific functionalities,

such as booking engines, required redeploying the entire system. This approach became a bottleneck as

airlines faced growing customer expectations and operational complexities.

Challenges with Monolithic Architectures

1. Scalability Issues:

o Monolithic systems required scaling the entire application to support a single resource-

intensive function, such as flight search during holiday travel peaks. This led to inefficient

resource utilization.

2. Deployment Bottlenecks:

o Changes in one part of the system, such as introducing dynamic pricing, required testing and

redeployment of the entire application, increasing the risk of errors and downtime.

3. Fault Propagation:

o A single point of failure could bring down the entire system. For example, a crash in the

payment module could disrupt the reservation process.

4. High Maintenance Costs:

o Legacy systems required specialized expertise, which increased operational costs. Moreover,

integrating modern APIs or cloud solutions was cumbersome.

Shift Towards Modular Architectures

To address these challenges, airline IT systems began incorporating modular designs in the late 1990s and

early 2000s. This shift was influenced by the emergence of Service-Oriented Architecture (SOA), which

introduced loosely coupled services within a monolithic framework. SOA enabled better integration with

external systems, such as third-party booking platforms and payment gateways, but still fell short in terms of

agility and scalability.

The Need for Microservices

As airlines sought to deliver real-time updates, personalized services, and seamless customer experiences

across platforms, the limitations of monolithic and SOA-based systems became evident. The rise of cloud

computing and containerization technologies like Docker and Kubernetes offered an opportunity to

transition to microservices. Microservices provided a decentralized, modular approach, allowing airlines to

scale and deploy individual components, such as flight search or seat selection, independently.

Examples of Early Adopters

1. American Airlines: Expanded the SABRE system to a cloud-based platform to support global

operations and dynamic pricing.

https://www.ijirmps.org/

Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 3

2. Lufthansa: Migrated critical components, such as booking engines, to microservices to improve

scalability and response times.

3. Delta Airlines: Transitioned its customer relationship management (CRM) module to a

microservices-based architecture to enhance personalization.

2.2 Emergence of Microservices architecture emerged as a response to the limitations of traditional

monolithic and Service-Oriented Architecture (SOA) systems. While SOA introduced the concept of loosely

coupled services, it still relied on centralized control and extensive middleware, which limited scalability

and flexibility. In contrast, microservices offer a decentralized approach, focusing on modularity, autonomy,

and independent deployments.

Key Principles of Microservices

1. Service Independence: Each microservice is a self-contained unit, responsible for a specific

business function such as flight reservations, payment processing, or customer notifications. This

independence allows services to operate and evolve without dependencies on other parts of the

system.

2. Decentralized Data Management: Unlike monolithic systems, where a single database serves all

functions, microservices use distributed data models. This approach reduces bottlenecks and ensures

faster data retrieval for specific services.

3. Domain-Driven Design (DDD): Microservices align closely with business domains. For example,

in an airline system, separate microservices can handle domains like ticketing, seat management, and

loyalty programs, ensuring a clear separation of concerns.

Benefits of Microservices in Airline IT Systems

• Scalability: Airlines can scale specific services, such as flight search engines, during high-demand

periods without affecting other services.

• Flexibility: New features, like real-time flight tracking, can be introduced quickly by deploying

updates to specific services.

• Resilience: A failure in one service, such as baggage tracking, does not cascade to other services,

ensuring overall system stability.

Role of Emerging Technologies

The emergence of containerization tools like Docker and orchestration platforms like Kubernetes has

accelerated the adoption of microservices. These technologies allow services to run independently in

isolated environments, simplifying deployments and resource allocation.

Adoption in Airlines

Leading airlines have adopted microservices to enhance their IT systems. For instance:

• Lufthansa: Migrated to microservices for faster deployment of booking and check-in services.

• AirAsia: Leveraged microservices to improve dynamic pricing and customer engagement.

Microservices have thus become a cornerstone for modernizing airline IT systems, providing the agility and

robustness needed to meet evolving business and customer demands.

https://www.ijirmps.org/

Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 4

3. Benefits of Transitioning to Microservices

3.1 Scalability

Scalability is one of the defining advantages of microservices architecture. Unlike monolithic systems,

which require the entire application to scale as a single unit, microservices allow scaling of specific

components based on demand.

For instance:

• Flight Booking Services: During peak travel seasons, such as holidays, the flight booking service

may experience a surge in user traffic. Microservices enable airlines to scale only the flight booking

service by allocating additional resources, leaving less active services, such as baggage tracking,

unaffected. This prevents overloading the system and ensures consistent performance.

• Dynamic Resource Allocation: Airlines can use cloud platforms with auto-scaling capabilities to

dynamically adjust resources. For example, systems hosted on AWS or Azure can automatically

provision extra compute power for high-demand services.

This targeted scaling reduces unnecessary infrastructure costs and ensures better utilization of resources,

particularly in global operations where traffic patterns vary significantly by region and time.

3.2 Faster Deployment Cycles

Microservices support agile development by allowing independent deployments of services. Each service

can be developed, tested, and deployed without affecting the rest of the system. This independence

eliminates the bottlenecks common in monolithic architectures, where deploying even minor changes

requires redeploying the entire application.

Example:

• Dynamic Pricing: Airlines often adjust ticket prices in real-time based on demand, availability, and

competitor pricing. If dynamic pricing is implemented as a standalone microservice, updates to its

algorithms or UI can be deployed instantly. This avoids disruptions to core functionalities like

ticketing and payment systems, enabling faster iterations.

By enabling continuous delivery, microservices allow airlines to respond quickly to market changes and

customer needs, ensuring they remain competitive.

3.3 Fault Isolation

Fault isolation is a critical feature of microservices architecture, ensuring system resilience even in the face

of service failures. In monolithic systems, a single failure, such as an error in the baggage tracking module,

could cause the entire system to crash. Microservices mitigate this by isolating failures to the affected

service.

For example:

• If the baggage tracking service encounters an issue, it will not disrupt the check-in service or flight

booking service, which can continue operating normally. This isolation is achieved by decoupling

services and ensuring each has its own infrastructure and runtime environment.

Fault isolation is particularly crucial for airlines, where system downtime can lead to significant customer

dissatisfaction, financial losses, and operational disruptions.

https://www.ijirmps.org/

Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 5

3.4 Cost Optimization

Microservices allow airlines to deploy and manage resources efficiently, leading to cost savings. In a

monolithic system, all components share the same resources, often resulting in over-provisioning to meet

peak demands. With microservices, resources are allocated precisely where needed.

Key points:

• On-Demand Deployment: Microservices are containerized and can be deployed only when required.

For instance, seasonal services, such as special holiday discounts, can be spun up temporarily and

decommissioned after the season ends.

• Cloud-Native Optimization: Airlines leveraging cloud services can use pay-as-you-go pricing

models. For example, the ticketing microservice may require higher resources during peak booking

times, while customer support services may need scaling during flight delays.

This granular control over resource allocation reduces unnecessary expenses and aligns IT spending with

actual business needs, making operations more cost-effective.

4. Challenges in the Transition

4.1 System Complexity Decomposing a monolithic application requires thorough domain analysis and

technical expertise. For example, identifying interdependencies between flight booking, payment, and

customer data services can be challenging.

4.2 Data Management Ensuring data consistency across distributed services, such as synchronizing

reservation data between multiple microservices, is complex. Airlines often use event-driven architectures

and data replication techniques to mitigate these challenges.

4.3 Performance Overheads Microservices rely on network communication (e.g., REST APIs), which adds

latency compared to in-process communication in monoliths. This latency must be carefully managed in

real-time systems like seat availability or ticket purchases.

5. Best Practices for Transition

1. Incremental Decomposition: Begin by decomposing non-critical services, such as loyalty programs

or user analytics, before addressing core services like reservations or ticketing.

2. API Gateway Implementation: An API gateway manages traffic routing, authentication, and

service discovery, reducing inter-service complexity. Examples include Kong or AWS API Gateway.

3. Monitoring and Logging: Use centralized monitoring tools like Prometheus for metrics and

Grafana for visualization. Distributed tracing tools, such as Jaeger, are critical for debugging service

interactions.

6. Case Study: Airline Reservation System

An airline reservation system adopted Kubernetes for container orchestration and Docker for service

isolation. The migration process involved:

1. Decomposing Services: Core functionalities like flight booking, payment processing, and seat

selection were isolated into separate microservices.

https://www.ijirmps.org/

Volume 7 Issue 4 @ July - August 2019 IJIRMPS | ISSN: 2349-7300

IJIRMPS1904232038 Website: www.ijirmps.org Email: editor@ijirmps.org 6

2. Implementing an API Gateway: This gateway routed requests efficiently and handled

authentication for distributed services.

3. Results:

o Deployment time for new features was reduced by 40%.

o Downtime during peak traffic reduced by 30% due to fault isolation.

o Improved resource allocation with auto-scaling for high-demand services like ticketing.

7. Conclusion

Transitioning from monolithic to microservices architecture is not without challenges. However, the

demonstrated benefits in terms of scalability, agility, and fault tolerance make it a strategic necessity for

modern airline IT systems. Future research should focus on advanced orchestration tools and AI-driven

solutions for optimizing microservices performance in highly dynamic airline environments.The evolution

of airline IT systems reflects the growing need for flexibility, scalability, and reliability in a dynamic

industry. The shift from centralized monolithic systems to modular designs and, eventually, microservices

underscores how technological advancements are addressing the demands of modern air travel. By adopting

microservices, airlines are better positioned to innovate, improve customer experiences, and reduce

operational inefficiencies.By enabling targeted scalability, faster deployments, fault isolation, and cost

optimization, microservices architecture provides airlines with the flexibility and efficiency required to

operate in a dynamic and competitive industry. These benefits not only improve system performance but

also enhance customer satisfaction by delivering reliable and seamless services.

References

1. Nakaike, T., Ohara, M., & Ueda, T. (2016). Workload characterization for microservices. IEEE. Link

2. Indrasiri, K., & Siriwardena, P. (2018). Microservices for the Enterprise. Apress. Link

3. Granchelli, G., et al. (2017). MicroART: A software architecture recovery tool for microservice

systems. IEEE. Link

4. Richardson, C. (2018). Microservices Patterns. Manning. Link

https://www.ijirmps.org/
https://ieeexplore.ieee.org/abstract/document/7581269
https://ieeexplore.ieee.org/abstract/document/7581269
https://link.springer.com/book/10.1007/978-1-4842-3858-5
https://link.springer.com/book/10.1007/978-1-4842-3858-5
https://ieeexplore.ieee.org/abstract/document/7958510/
https://ieeexplore.ieee.org/abstract/document/7958510/
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/

