
Volume 8 Issue 2 @ March - April 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2002232035 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Challenges and complexities in developing a

Debugger-like tool for Real-Time insights into

Machine Learning Model Training

Vishakha Agrawal

vishakha.research.id@gmail.com

Abstract

Developing debugging tools for machine learning (ML) model training poses significant technical

challenges and architectural complexities. This paper delves into the unique demands of real-time

monitoring and analysis of neural net- work training, revealing the limitations of traditional

debugging approaches in ML contexts. We propose innovative solutions to overcome these

challenges, highlighting the critical intersection of distributed systems, performance optimization, and

ML observability. Our research provides valuable insights into the design of effective debugger-like

tools, enabling data scientists and engineers to gain deeper real-time insights into ML model training

processes.

Keywords: Debugging, TensorBoard, MLFlow, Weights Biases, State Management

I. INTRODUCTION

The increasing complexity of machine learning models and their training processes has created a pressing

need for sophis- ticated debugging tools. Unlike traditional software debugging, ML model training presents

unique challenges due to its stochastic nature, distributed computation requirements, and the complex

interaction between model architecture, optimiza- tion algorithms, and training data[3]. This paper examines

the key challenges in developing debugging tools that provide real- time insights into the training process.

II. BACKGROUND AND RELATED WORK

1) Traditional Debugging Approaches: Traditional software debuggers operate through a well-

established set of mechanisms that have proven effective for conventional software development. These

typically include the ability to set breakpoints, inspect variable states, step through code execution, and

monitor memory usage and program flow. However, these conventional approaches prove inadequate

when applied to ML training scenarios, primarily due to the fundamentally different nature of the

computation and optimization process involved in training neural networks[2].

2) Existing ML Monitoring Tools: The current landscape of ML monitoring tools includes popular

platforms such as TensorBoard[7], Weights Biases, and MLflow[9]. While these tools provide valuable

capabilities for vi- sualizing training metrics and model performance, they primarily focus on high-level

monitoring rather than detailed debugging functionality. This limitation creates a gap in the toolkit

available to ML practitioners who need to diagnose and resolve issues during the training process.

III. KEY CHALLENGES

1) Real-Time Performance Impact: One of the most significant challenges in developing ML debugging

https://www.ijirmps.org/
mailto:vishakha.research.id@gmail.com

Volume 8 Issue 2 @ March - April 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2002232035 Website: www.ijirmps.org Email: editor@ijirmps.org 2

tools lies in minimizing the performance impact on the training process. The debugger must efficiently

collect and process large volumes of data without significantly impacting training speed [6]. This requires

careful management of concurrent access to model states and gradients, while also handling the

substantial memory overhead that comes from storing intermediate computations. Finding the right

balance between debugging granularity and training speed remains a crucial consideration in tool design.

2) State Management and Memory: The scale of mod- ern ML models presents unprecedented

challenges in state management and memory usage. With models often containing millions or billions of

parameters that change with each training step, efficient storage and retrieval of parameter states becomes

critical. This ne- cessitates sophisticated memory management strategies for gradient history and selective

sampling approaches to filter relevant information. Additionally, implementing effective compression

strategies for long-term storage of debugging data is essential for practical usage.

IV. PROPOSED SOLUTIONS

1) Architectural Considerations: A robust ML debugging tool requires careful consideration of its

fundamental architecture to address the challenges previously discussed. The implementation should

prioritize asynchronous data collection pipelines that minimize the impact on training performance while

maintaining data integrity. This can be achieved through a hierarchical storage system that manages

different debugging granularities efficiently. The architecture should incorporate advanced compression

algorithms for parameter state storage, ensuring that debugging data can be maintained without

overwhelming storage resources. Additionally, distributed tracing capabilities must be seamlessly

integrated to enable effective cross- node debugging in distributed training environments [1].

2) Intelligent Sampling and Filtering: Managing the immense volume of debugging data requires

sophisticated sampling and filtering mechanisms. We propose an adaptive sampling approach that

dynamically adjusts based on training dynamics, allowing for more intensive monitoring during critical

phases while reducing overhead during stable training periods. This should be coupled with a priority-

based filtering system for parameter updates, enabling developers to focus on the most relevant

aspects of model training. Furthermore, incorporating anomaly detection mechanisms can enable

automatic insertion of debug points when unusual behavior is detected, making the debugging process

more efficient and targeted.

3) Visualization and Interface Design Effective debugging relies heavily on intuitive visualization of

complex train- ing dynamics [4]. The interface must provide clear representations of parameter

distribution changes over time, enabling developers to identify potential issues in weight updates and

optimization behavior. The vi- sualization system should include comprehensive views of gradient flow

through the network, helping users understand how information propagates during training. Additionally,

the interface must provide insights into computation graph execution patterns and highlight per- formance

bottlenecks, enabling developers to identify optimization opportunities effectively.

V. IMPLEMENTATION CONSIDERATIONS

1) Technical Requirements: Successfully implementing an ML debugger demands careful attention to

several critical technical aspects. The system requires deep integration with existing ML frameworks

while maintaining flexibility to accommodate future changes in the ecosystem. This integration must

support efficient data serialization and transport mechanisms to handle the high volume of debugging

information generated during training [8]. The implementation needs to incorporate a scalable storage

https://www.ijirmps.org/

Volume 8 Issue 2 @ March - April 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2002232035 Website: www.ijirmps.org Email: editor@ijirmps.org 3

backend capable of managing the substantial amount of debugging data while maintaining quick access

times. Real-time processing capabilities must be implemented to provide immediate feedback during

training, and the API design should maintain flexibility for compatibility across different frameworks and

training approaches.

2) Performance Optimization: Performance optimization in ML debugging tools requires a multifaceted

approach to resource management. Memory pooling strategies for parameter storage can significantly

reduce allocation overhead and improve efficiency. The system should implement batch processing of

debugging information to minimize the impact on training performance while maintaining data coherence.

Adaptive sampling strate- gies must be carefully tuned to balance information granularity with system

overhead. Additionally, imple- menting efficient data compression techniques becomes crucial for

managing the large volumes of debugging data generated during training sessions.

VI. FUTURE DIRECTIONS

1) Research Opportunities: The field of ML debugging tools presents numerous opportunities for future

research and development. Automated debugging suggestion systems could leverage historical debugging

data to provide intelligent recommendations for resolving common training issues. Advanced causal

analysis techniques could help developers better understand the root causes of training failures, leading to

more efficient problem resolution. Integration with hyperparameter optimization systems could provide

deeper insights into the relationship between model configuration and training behavior. The

development of advanced visualization techniques for high-dimensional data could further enhance our

ability to understand and debug complex model behaviors.

2) Technical Challenges: Several significant technical challenges remain in the development of ML

debug- ging tools. As model architectures continue to grow in size and complexity, scaling debugging

capabilities becomes increasingly difficult[5]. Supporting new train- ing paradigms, such as federated

learning and few-shot learning, requires novel approaches to debugging and monitoring. Maintaining

compatibility across the rapidly evolving landscape of ML frameworks presents ongo- ing challenges.

Additionally, the ever-increasing size of model checkpoints and debugging data necessitates innovative

approaches to reducing storage requirements while maintaining debugging effectiveness.

VII. CONCLUSION

The development of effective debugging tools for ML training represents a crucial frontier in machine

learning infrastructure. The challenges discussed in this paper highlight the complexity of creating tools that

can provide meaningful insights while maintaining acceptable performance character- istics. Success in this

domain requires careful consideration of distributed systems architecture, performance optimization

techniques, and user interface design. As the field continues to evolve, future work should focus on reducing

the performance impact of debugging while increasing the depth and usefulness of the insights provided. By

addressing these challenges, we can create more robust and effective tools for understanding and improving

machine learning model training.

REFERENCES

[1] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. Debugging distributed systems:

Challenges and options for validation and debugging. Queue, 14(2):91–110, 2016.

[2] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley. The ml test score: A rubric for ml

https://www.ijirmps.org/

Volume 8 Issue 2 @ March - April 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2002232035 Website: www.ijirmps.org Email: editor@ijirmps.org 4

production readiness and technical debt reduction. In 2017 IEEE international conference on big data

(big data), pages 1123–1132. IEEE, 2017.

[3] Shanqing Cai, Eric Breck, Eric Nielsen, Michael Salib, and D. Sculley. Tensorflow debugger:

Debugging dataflow graphs for machine learning. 2016.

[4] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. Deepfault: Fault localization for deep neural

networks. In International Conference on Fundamental Approaches to Software Engineering, pages

171–191. Springer, 2019.

[5] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. Model assertions for debugging

machine learning. In NeurIPS MLSys Workshop, volume 3, 2018.

[6] Raoni Lourenc¸o, Juliana Freire, and Dennis Shasha. Debugging machine learning pipelines. In

Proceedings of the 3rd International workshop on data management for end-to-end machine learning,

pages 1–10, 2019.

[7] D Mane´ et al. Tensorboard: Tensorflow’s visualization toolkit. Retrieved October, 8:2021, 2015.

[8] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay

Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden technical debt in

machine learning systems. Advances in neural information processing systems, 28, 2015.

[9] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth

Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, et al. Accelerating the machine learning

lifecycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

https://www.ijirmps.org/

