
Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Building a Scalable and Integrated Event-Driven

Processing Framework Using AWS Lambda for

Real-Time Data Applications

Anila Gogineni

Independent Researcher, USA

anila.ssn@gmail.com

Abstract

This paper presents a framework based on AWS Lambda for constructing a large-scale and fully

integrated event processing system targeted for real time data. The framework also meets the major

issues in today’s specialized data architecture such as scalability, low-latency operation, and cost. The

proposed architecture of the solution effectively minimizes the operational complexity, infrastructure

control, and scale absurdity with the help of AWS Lambda. The design fully aligns with other AWS

services including amazon S3, DynamoDB, and EventBridge to create a strong and integrated

ecosystem for data ingestion, processing as well as storage. The methodology is established in such a

way that it forms a loosely coupled, yet highly cohesive system in order to deliver continuity and fault

tolerance. Event sources, processing layer, and the means by which services must communicate with

one another are also engineered to provide better performance, but where possible their usage and

setup are as simple as can be. The implementation concentrates on data security, monitoring by AWS

CloudWatch, and cost control approaches of provisioned concurrency and efficient resource uses. The

analysis shows how our proposed framework provides high throughput and reliability for real-time

data processing use-cases, namely IoT analytics and financial transaction monitoring. This paper

demonstrates the usefulness of AWS Lambda approach to managing event-based asynchronous

processes and appreciates the fact that some constraints of the architecture, such as cold-start latency,

may limit its effectiveness in specific settings. The framework can be used as a scalable and cost-

efficient solution for organizations using serverless computing to analyze real-time data, and provides

valuable insights for future advancements of serverless architecture and Event Driven Computing.

Keywords: AWS Lambda, Event-Driven Architecture, Real-Time Data Processing, Serverless

Computing, Scalability, Data Flow, AWS Services, API Gateway, DynamoDB, CloudWatch, Cloud

Integration

I. INTRODUCTION

Real time data processing is fundamentally important today’s application scenarios including IoT

processing, fraud detection, and recommendation systems. These applications require real time analysis on

big data sets that are high velocity and high volume, which presents scalability, low latency, and operational

cost issues. These requirements present an issue to traditional systems founded on the established

framework as well as the time consuming and highly dependent processes. As noted earlier, these challenges

have been well handled by the event-driven architectures which have been described below. Because such

data is processed as events occur, such systems are in a position equally to handle asynchronous workloads

as they do with complexity and latency. Event driven systems are particularly attractive for example where

https://www.ijirmps.org/
mailto:anila.ssn@gmail.com

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 2

data activity is infrequent or intermittent because the applications are inherently scalable while at the same

time ensuring reliability and dependable provisioning of service.

AWS Lambda is Amazon’s serverless compute service that can provide a good support for

implementing event-driven style. The architecture of its platform is serverless, which means that there is no

need for infrastructure procurement and management to accommodate internal or customer requirements.

Furthermore, AWS Lambda seamlessly works with other AWS services including but not limited to S3,

DynamoDB and Event bridge making them a perfect ecosystem for real time data ingestion, processing and

storage. These characteristics make AWS Lambda appropriate to be used in constructing complex real-time

data solutions that are economical to develop and maintain. This research seeks to solve this problem by

putting forward a scalable and integrated event-driven solution based on AWS Lambda. It expands current

solutions by offering a lower operational density, seamless scalability, and simplicity of integration, which

contributes to the formation of the evolution of real-time data processing structures.

II. PROPOSED SYSTEM ARCHITECTURE

System Overview

The developed framework is a single and extensible event processing platform built on AWS

Lambda as the primary computational model. Its major concern is to address the uninterrupted real time data

flow and enhance the communication with multiple other AWS associated applications. The architecture is

organized into four key layers: resource discovery, event handling, storage and persistence, and system

integration [1]. All these layers therefore ensure the cost optimal, high available real time consumption,

analysis and storage of large volumes of rich streams of data from various sources. AWS Lambda is at the

center of this system as workload issues can be addressed with minimal resources while offering the best

processing time.

Data Flow Diagram

Data flow starts with event sources from S3 services, DynamoDB or API Gateway for forming of the

trigger events [2]. These are processed by AWS Lambda which trigger business logic and cooperate with

other storage services such as S3, DynamoDB and others if necessary.

Key Components

A. Event Sources

It is built using various event sources for instance S3 for object storage, DynamoDB for a NoSQL

database and API Gateway for REST APIs. These sources function to activate AWS Lambda to begin the

processing workflow.

B. Processing Layer

AWS Lambda is the center of processing, which runs code as per events received. It lacks the need for a

server and it automatically scales depending on workload requirements. AWS Lambda is suitable for

stateless operations, and it can accomplish complex work after being activated by events.

C. Storage and Persistence

For data storage, Simple Storage Service (S3) is used for object data storage and data persistency,

Dynamic Host Computing (DynamoDB) comes as a necessity for rapid data access to NoSQL data and

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 3

Relational Database Service (RDS) for town relational databases [3]. These services provide ordinary

backup and easy access to information whenever it is needed.

D. Integration Layer

Integrated for communication between services, the system introduces the Lambda function with SNS,

SQS, and AWS EventBridge. SNS supports the capability of push notification and SQS offers the option of

message queuing in async messaging. EventBridge makes it easy to forward an event to AWS service for

improved reliability and scalability.

System Design Diagram

Loose coupling, high cohesion, scalability, and cost efficiency are considered among the most

important architectural objectives for the system design. All of these components function independently but

are tightly connected, which means that in case of a failure only the problematic component is affected. The

solution uses the AWS Lambda, S3, and DynamoDB functions and is architected to provision the resources

only when needed for better efficiency and spend [4]. Retry mechanisms, dead letter queues (DLQ), as well

as distributed application architectures such as multi-region deployments enhance the capacity of the

architecture to handle a number of faults.

FIG 1: System Architecture Diagram

Design Principles

A. Loose Coupling and High Cohesion

This separates all elements in a way that makes the system modular and allows each one to work in

isolation and at the same point cooperate with the other components. This approach reduces dependency and

brings less of an effort in an organizational aspect in managing the system.

B. Scalability and Fault Tolerance

With regard to scaling, the system is designed to scale up or down dynamically depending on workload,

which is supported by AWS Lambda Service Autoscaling. You get the distributed architecture out of the

services such as SQS and EventBridge; plus, the retry mechanisms applied to each effectively render it

reliable [5].

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 4

C. Cost-Effectiveness and Minimal Overhead

Through the use of serverless technologies, the system minimizes infrastructure cost and hence

operating expenses. AWS Lambda’s pricing structure means that users are not charged unless they use the

compute time of the framework which makes it very affordable.

This architecture represents a scalable, reliable and flexible solution for real-time data processing, which

is the case with this implementation.

III. IMPLEMENTATION DETAILS

Setup and Configuration

The actualization of the proposed framework starts with the creation of AWS Lambda functions and

associating them with the event sources. These functions can be created and deployed on AWS using

Management Console, AWS CLI, CloudFormation, AWS SAM or Terraform. The service sources which

include Amazon S3, Amazon DynamoDB and API Gateway are associated with triggers that cause Lambda

functions to be executed on occurrences of certain events [6]. For integration, there is control of event

routing using services like EventBridge while the proper access control is done using IAM roles. These roles

govern each Lambda function to access only necessary AWS resources without contacting other resources

in the account.

Event Handling and Processing

Event-driven workflows are controlled in the system by writing event handlers in AWS Lambda

form. These handlers are the ones that contain the business code and facilitate as well as scale the event

processing. Since Lambda has auto-scaling the system can employ more workers in order to handle more

events with little to no increase in the response time [7].

FIG 2: Event-Driven Architecture Diagram

Transient errors are kind of handled by using automatic retries with exponential backoff periods. _DEAD

LETTER QUEUES_ are also used to gather failed events that should not be lost during processing.

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 5

Security Considerations

One of the important sections within the framework is security. IAM is utilized to implement very

stringent security measures for Lambda functions and other AWS resources [8]. The structural integrity of

data is maintained through encryption – at the rest through the utilization of S3 bucket encryption or

DynamoDB encryption and for data in transit through TLS encryption.

FIG 3: Data Encryption and Decryption Process

In the sensitive workloads, Lambda functions execute in an Amazon Virtual Private Cloud (VPC) to secure

the function access to private resources and at the same time prevents the function from directly interacting

with the internet.

Monitoring and Optimization

AWS CloudWatch is leveraged to monitor the performance of Lambda functions, tracking metrics

such as invocation count, execution time, and error rates to assess system performance. Alerts are

configured to notify administrators of any anomalies or degradation in system performance. Cost

optimization is achieved through provisioned concurrency, which reduces cold start latency for frequently

invoked functions, and reserved capacity, which supports efficient operations during steady-state workloads.

FIG 4: Monitoring and Error Handling Diagram

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 6

Also, consistent calls to resources and exclusion of unrequired events help maintain low costs for the

system. This implementation clearly illustrates how AWS Lambda and related services can be leveraged to

construct an inherently safe, linearly scalable, and economically viable real-time data-driven flow

processing environment when practiced assuredly and systematically.

IV. CASE STUDY/USE CASE

Scenario Description

The proposed event-driven framework is used in a realistic case scenario of a real-time data

processing pipeline for IoT sensor data in a smart city environment. It enables tracking of air quality in

various locations through collecting temperature, humidification, and pollution levels at specified time

intervals through the IoT devices. These devices produce massive data velocities, also known as big data,

which are analyzed in real-time to offer recommendations for city managers and citizens [9]. Some of the

issues that must be addressed include low latency, high scalability and low operational costs. In this setup,

IoT devices initiate the Google API whereby the data gathered is relayed through an API Gateway into the

analytics system. AWS Lambda is used to analyze the incoming data because it is scalable and easy to

transform and DynamoDB is used to store the processed data as it provides low latency access.

Implementation and Results

The herein presented framework was shown to lead to improved system performance and superior cost-

effectiveness. AWS Lambda was integrated into the pipeline for the pipeline to be able to scale and handle

many records in a certain period the same as when many records are received in a certain few hours without

someone having to initiate it. The very fact of using serverless Lambda allowed balancing the demands for

computing resources on its own, while its use of charges for actual usage does not pose a threat to such

expenses in traditional infrastructure.

The implementation also led to the minimization of data processing delay so that results can come

within seconds. For example, the time taken to ingest and process data fell beneath 500 milliseconds giving

real-time alert on air quality deviations. The choice of DynamoDB as the primary database made it possible

to receive low latency queries for near real-time dashboards viewed by the city administrators. Encryption

was enhanced through setting up VPC invocation for Lambda functions with secured connection between

services and containing those services from interacting directly with the Internet. Also, the data in

DynamoDB and S3 databases was encrypted and TLS ensured data in transit encryption. AWS CloudWatch

was used as the main tool for pipeline performance check with notifications about possible problems in the

pipeline for preventing and correcting them.

V. ADVANTAGES AND LIMITATIONS

Advantages

Thus, the event-driven framework presented in the current paper concerning AWS Lambda has several

major benefits: Autoscaling is one of the benefits since it allows for the dynamic addition or subtraction of the

compute resource without much consent to meet the workloads’ demand when it is needed. This makes it

possible for the framework to adapt quickly to changes in the data exchange rate without much of a struggle

[10]. Together with other AWS services inclusive of S3, DynamoDB, SNS, EventBridge, AWS Lambda is

used to develop stable solutions with additional features. The integration of these services is very close to

result in reduced solution development time, proper solution design, and proper interconnecting of the system.

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 7

This is also cost effective and efficient since services from AWS Lambda follow the pay-as-you-go

model. They only pay for the amount of time the compute resources are used, which means the organization

does not have to reserve resources that will sit idle most of the time.

Limitations

Nevertheless, the proposed framework features some limitations. Cold start latency is one of them and it

occurs when rarely called Lambda functions are invoked. As can be seen during idling, the time for

initialization is not beneficial, which is critical to real-time operations [11]. Another is associated with

debugging and testing in distributed systems. Since the framework is stateless and event-based, tracing

problems across multiple services can be challenging; thus, it becomes harder to detect defects that may

emerge.

Finally, the framework has a drawback of locking a vendor, meaning the framework is closely

associated with AWS services. The process of migrating from one cloud provider to another may not be

easy, which proves to be a problem in case organizations need to switch or have diverse cloud strategies.

VI. CONCLUSION

Most of the components in the proposed framework utilize AWS Lambda to achieve scalability,

integration and event-driven systems for real-time data use. To this end, by adopting serverless computing,

the framework manages to meet the complexity issues including scalability, latency and operational

overhead. Lambda’s ability to work hand in hand with other AWS services, the freedom of charging based

on the usage, and strong security architecture make it ideal for handling massive volumes of high velocity

data across different applications. The use of the presented framework lies in the possibility to process data

and make quick conclusions as fast as in several milliseconds, which can be beneficial for analytics of the

Internet of Things, monitoring financial transactions and real-time customer interaction. The asynchronous

event-driven approach also makes it possible to provide a dynamic workload distribution, which is

important for changing workload characteristics coupled with the fact that the architecture is decoupled,

which improves maintainability.

Further research may consider expanding the framework to organizations that use hybrid or multiple

clouds to build and deploy their applications to take advantage of the features that are offered by multiple

cloud vendors while at the same time, not be fully locked in with any of them. Such additional features as

anomaly detection based on Artificial Intelligence or predictive analytics, incorporated into the framework

of the system, could contribute to its effectiveness in data-intensive applications even more. Also, more

work on underlying possible solutions for reducing the cold start latency or improving the debugging tools

for the distributed environment would eradicate some of the current shortages and at the same time solidify

its worth in real-time data solutions.

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 8

VII. APPENDIX

AWSTemplateFormatVersion: '2010-09-09'

Resources:

 EventProcessorLambda:

 Type: AWS::Lambda::Function

 Properties:

 FunctionName: EventProcessor

 Runtime: nodejs14.x # Specify the Lambda runtime (e.g., nodejs14.x, python3.8)

 Handler: index.handler # Entry point for the Lambda function

 MemorySize: 128 # Lambda function memory size in MB

 Timeout: 5 # Timeout in seconds

 Role:

 Fn::GetAtt: [LambdaExecutionRole, Arn] # IAM role for Lambda function permissions

 Environment:

 Variables:

 ENV: production

 REGION: us-east-1

 LOG_LEVEL: info

 Events:

 S3Event:

 Type: S3

 Properties:

 Bucket: data-bucket # S3 Bucket name

 Events: s3:ObjectCreated:* # Trigger the Lambda function on object creation

 APIGatewayEvent:

 Type: Api

 Properties:

 Path: /processData # API Gateway endpoint path

 Method: GET # HTTP method

 RestApiId: !Ref ApiGatewayRestApi # Reference to API Gateway API

VIII. REFERENCES

[1] G. McGrath, J. Short, S. Ennis, B. Judson, and P. Brenner, “Cloud Event Programming Paradigms:

Applications and Analysis,” Cloud Event Programming Paradigms: Applications and Analysis, pp. 400–

406, Jun. 2016.

[2] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, “Lambda architecture for cost-effective

batch and speed big data processing,” 2021 IEEE International Conference on Big Data (Big Data), Oct.

2015.

[3] M. Djonov and M. Galabov, “Real-time data integration AWS Infrastructure for Digital Twin,” Real-

time Data Integration AWS Infrastructure for Digital Twin, pp. 223–228, Jun. 2020.

[4] Y. Kumar, “Lambda Architecture – Realtime data Processing,” SSRN Electronic Journal, Jan. 2020.

[5] V. Ivanov and K. Smolander, “Implementation of a DevOps pipeline for serverless applications,”

in Lecture notes in computer science, 2018, pp. 48–64. https://link.springer.com/chapter/10.1007/978-3-

030-03673-7_4.

https://www.ijirmps.org/

Volume 8 Issue 5 @ September - October 2020 IJIRMPS | ISSN: 2349-7300

IJIRMPS2005232139 Website: www.ijirmps.org Email: editor@ijirmps.org 9

[6] A. Christidis, S. Moschoyiannis, C.-H. Hsu, and R. Davies, “Enabling serverless deployment of Large-

Scale AI workloads,” IEEE Access, vol. 8, pp. 70150–70161, Jan. 2020.

[7] V. Ivanov and K. Smolander, “Implementation of a DevOps pipeline for serverless applications,”

in Lecture notes in computer science, 2018, pp. 48–64. https://link.springer.com/chapter/10.1007/978-3-

030-03673-7_4.

[8] M. Villamizar et al., “Cost comparison of running web applications in the cloud using monolithic,

microservice, and AWS Lambda architectures,” Service Oriented Computing and Applications, vol. 11,

no. 2, pp. 233–247, Apr. 2017, https://link.springer.com/article/10.1007/s11761-017-0208-y.

[9] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework and a performance assessment for

serverless MapReduce on AWS Lambda,” Future Generation Computer Systems, vol. 97, pp. 259–274,

Mar. 2019, https://www.sciencedirect.com/science/article/abs/pii/S0167739X18325172?via%3Dihub.

[10] S. Shrestha, “Comparing Programming Languages used in AWS Lambda for Serverless

Architecture,” 2019.

[11] M. S. Hasan, F. Alvares, T. Ledoux, and J.-L. Pazat, “Investigating energy consumption and

performance Trade-Off for Interactive Cloud Application,” IEEE Transactions on Sustainable

Computing, vol. 2, no. 2, pp. 113–126, Apr. 2017.

https://www.ijirmps.org/

