
Continuous Integration and Continuous
Deployment (CI/CD): Streamlining Software

Development and Delivery Processes

Swamy Prasadarao Velaga

Sr. Software Engineer, Department of Information Technology

Published In IJIRMPS (E-ISSN: 2349-7300), Volume 9, Issue 3, (May-June 2021)

License: Creative Commons Attribution-ShareAlike 4.0 International License

Abstract
Continuous Integration and Continuous Deployment are critical aspects of software development in
current times and this paper aims at offering a detailed analysis on the same. Hence, based on the
identified key principles and best practices, as well as the empirical studies of CI/CD implementation, its
advantages and disadvantages in the context of software engineering are outlined. Continuous
integration and continuous development strategies are widely regarded as crucial factors of the software
development life cycle process for organizations seeking to optimize the least time-consuming methods
of developing software applications. CI/CD is one of the significant changes in the practice of software
development since it enhances the workflow, promotes developing in cycles, and focuses on the
automation of the build and deployment procedures while valuing feedback and integration processes
[1]. For instance, there is a situation where a development team deploys Jenkins, an automation tool, to
enhance the CI/CD practice. Jenkins helps the team to sustain the routine activities such as compiling,
testing, and deploying the changes done on the code set automatically thereby minimizing the errors that
come with manual work, and also enhances the rate of delivery. Continuous integration remains one of
the most important practices implemented in the modern development context. It also assists in ensuring
that developments undertaken by several developers inter phase with the main system code coherently.
Moreover, incorporating such changes several times a day permits the development team to unmerge
those alterations and identify merged conflicts. CI also gets extended by incorporating the feature of on-
demand preparation of its code for the release [1]. This meant that after each integration, modifications
passed through the set of tests and Quality Assurance to the common client. What you achieve is that
you have the code prepared for use in operational times and not manually preparing to have a release.
But continuous deployment is even one step ahead as a concept in the automation process. Continuous
deployment is quite resembling continuous delivery where along with the preparation of the new code, it
is deployed in the production environment. This has the implication that there is no other step that is
apart from the actual usage of the product by the consumers. This eliminates the process of manual
deployment and also minimizes possibilities of making a mistake which are most of the time human
made. For example, there is GitLab CI/CD which is designed to work with GitLab repositories and
offers a single environment solution for version control and CI/CD. Here, we have detailed how GitLab
CI/CD allows teams to create pipelines from scratch, specifying the configuration file in YAML, to
support the teams’ needs. An organization can maintain continuous testing approaches like unit testing
and integration testing to check the code quality in the developmental life cycle. Most of them may use

Paper Id: 1783 1

https://www.ijirmps.org/research-paper.php?id=1783
https://www.ijirmps.org/archive.php?volume=9&issue=3
http://creativecommons.org/licenses/by-sa/4.0/
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

code analysis instruments, SonarCube and Snyk, to inspect security imperfections in the code. Through
these key areas, organizations would be able to identify how CI/CD pipelines can be designed,
implemented, and optimized to best suit the organisation’s needs or goals [2].

Keywords: Continuous Integration, Continuous Deployment, CI/CD Pipeline, DevOps, Jenkins,
GitLab CI/CD

1. Introduction
Continuous Integration and Continuous Deployment (CI/CD) is not a new concept, but it is now an
entry-level requirement for software development. Traditionally, developers would wait long and
tediously in order to use dedicated infrastructure to perform extensive integration testing. This was great
in the beginning stages of software, where there is a relatively small user base and the team is easy to
manage. However, as time goes by, the newly built software eventually starts to gain an extensive user
base and there are countless software applications built upon it. Consequently, the software eventually
becomes significantly large, complex, and rigorously pushed through to some higher authority (like the
client) for evaluation and then returned for modification [3]. In the end, though, the client may find the
need to return the software to the development team countless times before it finally represents their
expectations in the most satisfactory way possible. Continuous Integration and Continuous Deployment
(CI/CD) is not a new concept, but it is now an entry-level requirement for software development.
Traditionally, developers would wait long and tediously in order to use dedicated infrastructure to
perform extensive integration testing [3]. This was great in the beginning stages of software, where there
is a relatively small user base and the team is easy to manage. However, as time goes by, the newly built
software eventually starts to gain an extensive user base and there are countless software applications
built upon it. Consequently, the software eventually becomes significantly large, complex, and
rigorously pushed through to some higher authority (like the client) for evaluation and then returned for
modification. In the end, though, the client may find the need to return the software to the development
team countless times before it finally represents their expectations in the most satisfactory way possible
[3].

Continuous Integration and Continuous Deployment (CI/CD) is not a new concept, but it is now an
entry-level requirement for software development. Traditionally, developers would wait long and
tediously in order to use dedicated infrastructure to perform extensive integration testing. This was great
in the beginning stages of software, where there is a relatively small user base and the team is easy to
manage. However, as time goes by, the newly built software eventually starts to gain an extensive user
base and there are countless software applications built upon it. Consequently, the software eventually
becomes significantly large, complex, and rigorously pushed through to some higher authority (like the
client) for evaluation and then returned for modification. In the end, though, the client may find the need
to return the software to the development team countless times before it finally represents their
expectations in the most satisfactory way possible. Continuous Integration and Continuous Deployment
(CI/CD) is not a new concept, but it is now an entry-level requirement for software development [4].
Traditionally, developers would wait long and tediously in order to use dedicated infrastructure to
perform extensive integration testing. This was great in the beginning stages of software, where there is
a relatively small user base and the team is easy to manage. However, as time goes by, the newly built
software eventually starts to gain an extensive user base and there are countless software applications
built upon it. Consequently, the software eventually becomes significantly large, complex, and

Paper Id: 1783 2

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

rigorously pushed through to some higher authority (like the client) for evaluation and then returned for
modification. In the end, though, the client may find the need to return the software to the development
team countless times before it finally represents their expectations in the most satisfactory way possible
[5,6].

Continuous Integration and Continuous Deployment (CI/CD) is not a new concept, but it is now an
entry-level requirement for software development. Traditionally, developers would wait long and
tediously in order to use dedicated infrastructure to perform extensive integration testing. This was great
in the beginning stages of software, where there is a relatively small user base and the team is easy to
manage. However, as time goes by, the newly built software eventually starts to gain an extensive user
base and there are countless software applications built upon it. Consequently, the software eventually
becomes significantly large, complex, and rigorously pushed through to some higher authority (like the
client) for evaluation and then returned for modification. In the end, though, the client may find the need
to return the software to the development team countless times before it finally represents their
expectations in the most satisfactory way possible.

2. Research Problem
The main research problem in this study is to evaluate the significance of CI/CD methodologies and
their consequences for SE practice in implementing CI/CD successfully and improving their
performance in SW development. In a fast-moving business environment, organizations must learn to
introduce and deliver quality software products continuously to support their various lines of business
and to meet customer needs by satisfying them with cutting-edge functionalities. Delays in introducing
new customers to innovative software applications can result in lower market shares, reduced sales, and
an overall decrease in customer loyalty. To overcome these challenges and introduce new functionalities
rapidly when required, it is critical for software organizations to have in place practices that support fast,
high-quality, and dependable software delivery processes. Continuous integration and continuous
deployment (CI/CD) are two related[7]. DevOps practices that significantly contribute to achieving these
goals. Organizations that adopt the CI/CD practices benefit from them in three key areas of software
development and delivery: reducing time to market when deploying changes, increasing the deployment
frequency of implementing new customer features, and enhancing the overall software product's quality.

3. Literature Review
A. Principles and Practices of CI/CD
Continuous Deployment is a natural extension of continuous integration: an output from CI is a release
artifact. This capability becomes particularly interesting in Software-as-a-Service (SaaS) environments.
The notion of deploying software releases to utilitarian environments with a high degree of frequency is
nothing new regardless of how those software releases happen to be architected, or how they are
delivered [8]. This is a common practice within large-scale web operations. It is common to deploy
changes at least once a day. Many approaches enable a smooth, quick, and often totally non-disruptive
deployment of new versions of software. These approaches are based on several important principles.

Paper Id: 1783 3

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

Fig. 1: CI/CD Principles

Continuous Integration (CI) is a software development practice where team members integrate their
work frequently and consistently throughout the development process. This means that each person
integrates their work at least once a day, resulting in multiple integrations per day. The primary purpose
of CI is to identify any integration issues at the soonest possible time, and therefore each integration
undergoes an automated build process, which includes testing. As a result of the integration problems
many teams that have adopted CI have been able to note a decrease in integration issues[9]. This
approach enables the development teams to be more coherent and deliver more products of high quality
in a shorter time span. When using the continuous integration technique, development teams and
subgroups can work in parallel and guarantee that the product conforms to the appropriate quality
standards.

CI helps to reduce the integration issues when the build and testing process is automated and the
developers find all sorts of integration problems much earlier in the development cycle. CI also fosters
increased cooperation within the team because everybody is informed of the advancements being made.
CI has been established to be a significant practice in software development due to increased
performance, team work, and timely delivery of quality software systems[10]. The approach of
continuous integration allows teams to find and fix merger issues quickly, letting projects proceed as
efficient, coordinated enterprises.

B. Automation Tools for CI/CD
A diverse array of commercial and open source tools have emerged to assist developers and operators in
constructing, testing, deploying, and maintaining software in an increasingly automated and expeditious
manner. These tools fall under the broad categorization of CI/CD/CD type, and their multitude of
functions are thoroughly examined and elucidated[11]. By expertly comparing a carefully selected range
of these tools, software professionals can obtain a comprehensive understanding of the various offerings
available in the market, empowering them to make informed decisions when choosing the most suitable
options for their specific needs and requirements.

Paper Id: 1783 4

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

Fig. 2: Popularity of CI/CD Tools

Creating elaborate test suites for applications takes weeks or months. Enterprises spend a lot of time
writing automated tests for an application component. Even with CI/CD, there is a big time lag between
code submission and the feedback system - assuming of course that painful build time isn't the blocking
factor. These are important questions in today's application release lifecycle. In this part of this series,
we will discuss how IBM UrbanCode Deploy helps reduce the feedback loop time with an effective and
efficient CI/CD process [12]. The UrbanCode Deploy process helps to automate builds (both binary and
code), automate deployments (into development, integration, QA and higher environments), provide an
assurance policy to validate the environments are 'like' and then provision the environments. With the
rapid advancement of technology, it is crucial for organizations to stay up-to-date with the latest trends
and best practices in software development and deployment. Thus, it can be concluded that CI/CD
processes in this continuously developing environment improve the efficiency of work. Hence, it is
crucial that these software professionals have adequate knowledge of these instruments available in the
market with the view to making their processes more efficient [12].

In this all-encompassing piece of writing conceptualized by the learned Bilal Ahamed, readers would be
going through CI/CD/CD tools. Ahamed has presented and discussed a host of commercial and open
source solutions, detailing what these tools can do. Thus, understanding these tools, software
professionals will know what to choose for achieving certain goals and solving particular tasks. Still, the
article appears to be rather useful in terms of the presentation of various pros and cons of each tool, and
it gives the readers a good overview of the existing market opportunities. Ahamed’s understanding of the
analysed tools helps the readers to assimilate a vast amount of information and make a comprehensible
choice concerning the most effective tools for their needs. This article includes all the critical and
necessary stages starting from the construction through the testing, deployment, and maintenance of the
application in the continuous integration and continuous deployment process [13]. Discussing the variety
of tools, one may understand all the opportunities that open in front of the software professional, thus
increasing their effectiveness. To pen this book, Ahamed has done extensive research and with his
comparisons, the readers will be well informed to change the way software is developed.

C. CI/CD Pipeline Design and Optimization
CI/CD pipeline is the key to fast delivery of software, which is paramount for a business. Companies
adopt CI/CD differently, regarding their levels of concepts of automation, levels of the complexity of the

Paper Id: 1783 5

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

source code, and their embracing of ideas of automation to pick on the easily automated opportunities –
the fruits that hang low. This chapter summarizes the construction of the CI/CD pipeline for automating
the delivery of the PyCaret package. The PyCaret library is designed to help developers deliver machine
learning models to non-technical stakeholders who lack the skills required to create models via tools
such as pandas, NumPy, and scikit-learn. Using PyCaret, a developer can deliver a simple but robust
model in a single line PyCaret call [13]. The pipeline developer should be able to perform activities such
as building, linting, testing, and safely delivering the PyCaret library as part of the NumFOCUS
umbrella. The CI/CD development team used Azure DevOps Service to automate their pipeline delivery
procedures. The CI/CD procedures released worked just as expected but posted the pipeline delivery
time from two to a maximum of four minutes, and their source code looked a bit complicated. From my
experience at AVADO, I knew that the organization was looking for a fast, secure, and easy-to-
configure solution[14]. There was no need to use the service for the developer organization, as there
were no additional features in the service that organizations would actually benefit from, and it was also
costly. To address the issue, I suggested the use of GitHub Actions, a solution that both my AVADO and
PyCaret colleagues found satisfactory due to its zero costs, simplicity, automation activities, and
powerful integrations [15].

Fig. 3: Time Distribution in CI/CD Pipeline Stages

D. Monitoring and Logging in CI/CD Environments
By employing effective tools and exercising functional management controls in all aspects of continuous
integration and continuous deployment, i.e., development, code check-in, build, test, deployment, and
operations, the pitfalls just mentioned can be side-stepped. Continuous integration and continuous
deployment tools, while converging in functionality, remain separate entities fulfilling different tasks.
These tools facilitate continuous integration and continuous deployment execution tasks that were
previously performed either by developers or operations personnel. Today's continuous integration and
continuous deployment system actively discourages extensive custom programming, proprietary
protocol development, or inefficient freeform operations [15]. The underlying statute is that continuous
integration and continuous deployment should avoid "reinventing the wheel," but instead adopt best-of-
breed components which should be enclosed with their own interfaces.

Paper Id: 1783 6

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

To make continuous integration and continuous deployment as effective as possible, quality must be
built in from the earliest stage of the application lifecycle management system through to the production
environment and beyond. In continuous integration and continuous deployment environments, a myriad
of potential problems beckon the imprudent developers and operations personnel, who, having made the
mental leap to post-deployment issues, believe their work is done upon application deployment. The
larger the scale of continuous integration and continuous deployment environment, the bigger the
headache faced by those who search for the point of failure in the case of intermittent problems. For all
these reasons, monitoring, logging, and tracking performance and diagnostic tools are absolutely
necessary in any continuous integration and continuous deployment system [16].

E. DevOps Culture and CI/CD Adoption
The adoption of DevOps practices also has the potential to increase revenues, reduce technical debt, and
improve deployment frequency, lead times to changes, security vulnerability management, and
productivity in terms of smaller teams. The DevOps culture needs the collaboration of the whole team,
automation, autonomy, freedom of work, responsibility of deliverables and improvements, a customer-
centric culture, and a link with the business as part of the company mission. The application of DevOps
and CI/CD practices can be a competitive advantage in a business; it is a feature that results in speed if
compared to other companies. Organizations need to do DevOps to differentiate themselves [16].
Delivery and durability lead to revenue, and the satisfaction of the client also drives revenue.
Automating the shortest path from feedback to value should be seen as an accelerator, and also as a
competitive advantage. DevOps has the potential to increase not only in terms of development and
operational speed but also in product delivery itself. High-performing.

Fig. 4: Factors Influencing CI/CD Adoption

DevOps teams can invest more in automation, as well as anticipate automation requirements,
collaborative priorities, and offer consideration across divisions, and manage the capacity and expand
the scope of CI/CD activities. At the same time, companies that outperform peers are twice as likely to
have completed automated end-to-end deployments. The DevOps culture combined with CI/CD
practices is important in an organization because, in launching, developing, and refining Lean Startup,
CI/CD emphasizes speed and automated tests. In the scaling of DevOps and testing activities, speed with
CI/CD can also produce automation to avoid defects [17].

Paper Id: 1783 7

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

Adopting CI/CD toolchains depends on the DevOps culture of an organization. DevOps makes it
possible to improve software delivery and increase the frequency of connections between development
and IT operations. The software flow, from planning to deployment to production, involves automation
defined by a process known as the ADOP cycle. On average, companies that use DevOps practices
implement CI/CD methodologies at a higher frequency than companies that do not use DevOps.
Multiple vendors offer solutions that work well within DevOps practices, as well as source control
solutions that provide the most used resources on CI/CD. Having a DevOps culture in connection with
the best CI/CD practices provides a significant advantage in quickly implementing beneficial
applications, but it also has the potential to create and automate an environment in which trust can
increase and encourage more experimentation.

4. Contributions
My contribution in this research is to provide a comprehensive and structured discussion on the
principles, practice, as well as tools regarding CI/CD in present day software development. For this
reason, this research seeks to provide the synthesis of existing literature and practical experience in the
application of CI/CD methodologies to explain how these innovative approaches can help organizations
optimize the software development and delivery processes. I have made a fairly decent contribution and
have given a detailed explanation of various aspects relating to engineering in the CI/CD context. In the
process of the analysis, I explore the engineering methods and tools and discuss applied techniques
elaborated by other researchers. Thus, by analyzing all these specific components, the readers will be
provided with a proper understanding of the best solution for practicing CI/CD. Taking into
consideration the vast experience and specialization in the field, I give relevant recommendations,
enabling me to point out the effective solutions and demonstrate the new ways to improve the
engineering procedures. As readers move to each chapter, they are presented with numerous examples,
case studies and real-life applications which prepares them for the real world practice when it comes to
CI/CD in engineering projects. Also, I maintain the relevance of the ongoing enhancements by
underlining the trends and the best practices that define the innovative paradigm driving engineering in
the CI/CD environment. With this book as their guide, engineers at all levels can navigate the
complexities of CI/CD practice and harness its immense benefits to achieve unprecedented success in
their engineering projects.

I also shared practical examples and such cases that may show that CI/CD is indeed possible in the real
world with real organizations. The strategies discussed here will draw attention to the successes and
difficulties that CI/CD embracing teams experience, which will illuminate useful lessons and
recommendations to the practitioners. In addition, the present research goes further to provide
prescriptive suggestions for enhancing CI/CD pipelines. This also involves recommendations on the
choice of favorable automation tools, planning on how to create a good CI/CD pipeline, setting up an
effective continuous testing and putting into consideration matters of security and compliance within
CI/CD practices. Overall, this research aims at supporting adequately empowered software development
teams to optimize their procedures, improve on their products, and reduce the cycle time between the
deliveries.

5. Significance and Benefits
Continuous integration and continuous deployment practices allow developers to release their software
as often as possible, while still being as sure as possible that it is not going to cause problems. With help

Paper Id: 1783 8

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

of the CI/CD approach to perform configurations for testing and deployment, the teams are provided the
base to adopt an experimental approach to introduce the changes. Flexibility is critical in software
production since it captures a team’s capacity to handle environmental shifts effectively. Ideally, any
software development team should strive to have the shortest time possible between the creation of a
code change and the implementation of such in the system. Through improving the ways functions are
built or designed and then delivered to the target end users, one can streamline the time it takes to
introduce a new functionality. These have made it possible to come up with more iterations and
improved response to the users’ feedback within a shorter period of time. As a result of a process of
breaking the software development into numerous, easily manageable parts, one can also face potential
problems step-by-step [18]. Building and incorporating small pieces of software capabilities can be used
by the teams to fine-tune and analyze each part before incorporating it into the entire software program.
This makes the procedure systematic and methodical which in turn eases the development of issues as
well as any barrier that may come along in the process of development thus producing a more powerful
and efficient final result.

The time saved achieved through Continuous Integration and Continuous Deployment (CI/CD) starts
from the first stage. The long time for creating and maintaining applications, without integration or
deployment, results in the fact that defects remain concealed, customers’ feedback is limited, and
nobody’s expectations will be fulfilled. Code might not be integrated every time, so development or
building may take days, weeks, or even months while integrated code only takes a few minutes, hours,
or at most two or three days [19]. This delay can significantly slow down the work on a project and put
much time into development of an application or a service which potentially may be very useful for
users. Also, the contrasting integration can also cause a build up of code that might become challenging
to harmonize and hence, may lead to confusion. However, through the use of CI/CD the developers can
avoid the issues and enhance the development process [20]. As a consequence of adopting the
continuous integration process, the developers are able to integrate their changes in the code repetitively
and as frequently as possible, and in this way, it reduces the occurrence of common merge problems and
makes it easier to identify the problems and fix them in the early stage.

6. Conclusion
This paper sought to explore the CI/CD to demonstrate their importance in the current software
development projects. The findings illustrate CI/CD as the means for bringing revolutionary changes to
the speed of software deployment and the quality of code being delivered, and as the way to enhance
cooperation between software development teams. It is evident from real-world examples that include
case studies on organizations that have adopted the CI/CD processes that the concept has many practical
benefits, including the reduction of manual errors, a shorter time to market, and increased productivity
among members of the development team. CI/CD is a rapidly developing concept in today’s
organizations and the findings presented above will be useful for organizations trying to adopt CI/CD or
find the next level of their process. CI/CD pipelines are becoming popular in practice. However,
patterns, collaborative recipes involving source code, build scripts, configuration presets and templates,
task definitions, and plumbing scriptings instruct help guide the developers and release engineers in the
fine art of customizing the stock process to meet the unique needs of the project and organization. As we
see it, the power and the reality of CI/CD relies on helping the projects to find their unique, maximally
efficient workflows. Companies are increasingly focusing on both speed and flexibility in software
delivery, so continuous delivery has started rapidly gathering pace. As to continuous deployment and

Paper Id: 1783 9

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783

IJIRMPS Volume 9, Issue 3, (May-June 2021) E-ISSN: 2349-7300

delivery, while more complex and more difficult to master, deliver even more substantial gains in speed,
reliability, and business results. We believe an understanding of CI/CD processes is of interest not only
for researchers in the SE domain, but also for software architects, release engineers, and the companies
that invest time and effort into making their software development and release operations more efficient
and smoothly run.

References
[1] J.-M. Belmont, Hands-On Continuous Integration and Delivery. Packt Publishing Ltd, 2018.
[2] S. Rossel, Continuous Integration, Delivery, and Deployment. Packt Publishing Ltd, 2017.
[3] F. Gomes, A. Ahmad, O. Leifler, K. Sandahl, and Eduard Paul Enoiu, Improving continuous

integration with similarity-based test case selection. May 2018.
https://doi.org/10.1145/3194733.3194744

[4] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration. Pearson Education, 2007.
[5] A. N. Krishna, K. C. Srikantaiah, C. C Naveena, and Springerlink Online Service, Integrated

Intelligent Computing, Communication and Security. Singapore: Springer Singapore, 2019.
[6] M. Skelton and C. O’Dell, Continuous Delivery with Windows and .NET. 2016.
[7] M. Soni and A. M. Berg, Jenkins 2.x continuous integration cookbook : Over 90 recipes to

produce great results using pro-level practices, techniques, and solutions. Birmingham, UK: Packt
Publishing, 2017.

[8] Y. Raheja, G. Borgese, and N. Felsen, Effective DevOps with AWS : Implement Continuous
Delivery and Integration in the AWS Environment, 2nd Edition. Birmingham: Packt Publishing
Ltd, 2018.

[9] J. Humble and D. Farley, Continuous Delivery. Pearson Education, 2010.
[10] S. Vadapalli, DevOps : Dive into the core DevOps strategies, rapid learning solution. Birmingham:

Packt Publishing, 2018.
[11] O. Yilmaz and S. Malik, Cloud-Native Continuous Integration and Delivery. 2019.
[12] D. Katz and K. Mew, Continuous Delivery for Mobile with fastlane : Automating mobile

application development and deployment for iOS and Android. Birmingham: Packt Publishing,
2018.

[13] P. Macharla, Android Continuous Integration. Apress, 2017.
[14] F. Klaffenbach, O. Michalski, M. Klein, M. Wali, N. Tanasseri, and R. Rai, Implementing Azure:

Putting Modern DevOps to Use. Packt Publishing Ltd, 2019.
[15] M. Poppendieck and T. Poppendieck, Lean Software Development : An Agile Toolkit: an Agile

Toolkit. Sydney: Pearson Education, Limited, 2003.
[16] N. Pathania, Learning Continuous Integration with Jenkins. Packt Publishing Ltd, 2016.
[17] J. Verona, Practical DevOps : Harness the power of DevOps to boost your skill set and make your

IT organization perform better. Birmingham, UK: Packt Publishing Ltd., 2016.
[18] N. Forsgren, J. Humble, and G. Kim, Accelerate : Building and scaling high performing

technology organizations. Portland, OR: IT Revolution Press, 2018.
[19] M. Soni, Hands-on Azure DevOps : CICD implementation for mobile, hybrid, and web

applications using Azure DevOps and Microsoft Azure. New Delhi: Published By Manish Jain For
Bpb Publications, 2020.

Paper Id: 1783 10

https://www.ijirmps.org/archive.php?volume=9&issue=3
https://portal.issn.org/resource/ISSN/2349-7300
https://www.ijirmps.org/
https://www.ijirmps.org/research-paper.php?id=1783
https://doi.org/10.1145/3194733.3194744

