
Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Hierarchical and Balanced Data Structures in

Kubernetes

Satya Ram Tsaliki1, Dr. B. Purnachandra Rao2

1Senior ERP Developer, 2Lead Software Engineer

1KYOCERA Document Solutions America Inc, USA,
2Societe Generale Global Solutions Center, Bangalore, Karnataka, India

1satyaram.tsaliki@outlook.com, 2pcr.bobbepalli@gmail.com

Abstract

ETCD is a distributed key-value database that offers a dependable solution for storing and managing

data in distributed environments. This section provides insight into ETCD's functionality and its

importance in Kubernetes. ETCD guarantees data durability and consistency across multiple nodes,

supports distributed locks to avoid simultaneous modifications, and enables leader election for

distributed systems. It utilizes the Raft consensus algorithm to handle data replication and ensure

uniformity across nodes. ETCD nodes form clusters that enhance data reliability and availability. It

stores information as key-value pairs, provides real-time watchers for monitoring key changes, and

supports leases to manage distributed locks and resource allocation. ETCD acts as the primary

backend storage for Kubernetes, storing essential cluster information such as node metadata, pod

statuses, and replication controller details, along with configuration data like secrets, persistent

volume claims, and config maps, as well as network policies and rules. Its high availability ensures

both consistency and accessibility across nodes, while distributed locks safeguard data integrity by

preventing conflicts. Additionally, ETCD scales efficiently to support large Kubernetes clusters.

When a configuration change is applied via kubectl or other clients, the Kubernetes API Server

verifies, authorizes, and sends the updates to ETCD. ETCD processes the changes, stores the updated

configuration in its key-value store, and synchronizes the data across its cluster to maintain

consistency. As the core storage system of the Kubernetes cluster, ETCD preserves the cluster's state

by maintaining its latest data in a key-value format. This paper focuses on implementing ETCD using

balanced tree data structures, comparing the Adelson-Velsky Landis Tree with the B-Tree. This

paper highlights scenarios where B-Trees outperform logarithmic height tree Trees and aims to

demonstrate the superior performance of B-Trees for ETCD implementation.

Keywords: Service, IP-Tables, StatefulSets, ReplicaSets, Deployments, Load Balancer, Kubernetes

(K8S), Nodes, Pods, Cluster, Service Abstraction, ETCD.

INTRODUCTION

Kubernetes [1] is composed of multiple components that collaborate to manage containerized workloads

effectively. The Master Node oversees the entire cluster, coordinating tasks and scheduling workloads. The

API Server [2] acts as the interface for Kubernetes, exposing its functionalities through RESTful APIs. The

Scheduler is responsible for assigning tasks to nodes based on resource availability and workload

requirements. The Controller Manager maintains the desired cluster state by running control loops to

reconcile it with the actual state. Etcd [3], an open-source distributed key-value store, is central to managing

https://www.ijirmps.org/
mailto:1satyaram.tsaliki@outlook.com

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 2

cluster data. It ensures high availability, fault tolerance, and scalability through its distributed design. Key

features include a distributed architecture, leader election, real-time watchers for key changes, distributed

locking, leases for resource allocation, authentication, and authorization. It also supports multiple storage

backends such as BoltDB and RocksDB [4]. The APIs allow for operations such as storing key-value pairs,

retrieving values by key, deleting data, watching for updates, and managing resources through leases.The

Kube-proxy [5] handles networking within the cluster and external communications. A Pod is the smallest

deployable unit in Kubernetes, encapsulating one or more containers that share storage and network

resources. Namespaces enable isolated environments within a single cluster for better organization and

resource segregation. A Deployment provides a higher-level abstraction to manage Pods, allowing for

creation, scaling, updates, and rollbacks of applications. For stateful workloads like databases, where each

Pod requires a unique identity and persistent storage, StatefulSets are used. A DaemonSet [6] ensures a

specific Pod runs on all or selected nodes, making it ideal for deploying system-level services like

monitoring tools or log collectors. A Job represents a resource that executes a specific task and completes

successfully, unlike Deployments that run continuously. The CronJob resource schedules Jobs to run at

predefined intervals, functioning similarly to cron tasks in Linux systems.

LITERATUREREVIEW

Kubernetes Cluster

A cluster refers to the set of machines (physical or virtual) that work together to run containerized

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it

provides a platform for deploying, managing, and scaling containerized workloads.

Fig: 1 Cluster Architecture

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 3

Fig 1. Shows the Kubernetes cluster architecture. This shows two worker nodes and one control plane. A

Kubernetes cluster's framework consists of a central governing body and multiple operational nodes. The

governing body serves as the primary administrative interface, incorporating several vital components.

These components include the API gateway, which reveals the Kubernetes API, as well as the task allocator,

controller overseer, and etcd, a dispersed key-value repository [7]. Worker nodes, conversely, are the

machines responsible for executing application workloads. Each worker node runs a kubelet agent, which

ensures that containers are running in pods as specified by the governing body. The cluster operates on

entities such as pods, nodes, and services. Pods are the smallest deployable units in Kubernetes, consisting

of one or more containers [8]. They run on worker nodes and are managed by the governing body. Node is a

physical or virtual machines in the cluster that host Pods and execute application workloads.

Service is the one which provides stable networking and load balancing for Pods within a cluster. The

cluster operations includes scaling , load balancing [9], service abstraction and stable networking. Scaling

Kubernetes clusters can automatically scale up or down by adding/removing nodes or pods [10]. Resilience

means the clusters are designed for high availability and can automatically restart failed pods or reschedule

them on healthy nodes. In load Balancing Kubernetes ensures traffic is evenly distributed across Pods within

a Service. In self-Healing [11] the control plane continuously monitors the state of the cluster and acts to

correct failures or discrepancies between the desired and current state. Service Abstraction in Kubernetes

provides a way to define a logical set of Pods and a policy by which to access them. This abstraction enables

communication [12] between different application components without needing to know the underlying

details of each component's location or state. Stable Network Identity: Services provide a stable IP address

and DNS name that can be used to reach Pods, which may be dynamically created or destroyed. Load

Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a load

balancing mechanism [13]. When a Pod fails, the service can route traffic to other healthy Pods. Service

Types: Kubernetes supports different types of services. ClusterIP The default type, which exposes the

service on a cluster-internal IP. Only accessible from within the cluster. NodePort: Exposes the service on

each Node’s IP at a static port (the NodePort).

This way, the service can be accessed externally. LoadBalancer: Automatically provisions a load balancer

[14] for the service when running on cloud providers. ExternalName: Maps the service to the contents of the

externalName field (e.g., an external DNS name). Iptables is a user-space utility program that allows a

system administrator to configure the IP packet filter rules of the Linux kernel firewall. In the context of

Kubernetes, iptables is used to manage the networking rules that govern how traffic is routed to the various

services [15]. API Server: Exposes Kubernetes APIs.

All interactions with the cluster (e.g., deploying applications, scaling, etc.) go through the API server. Etcd

is a distributed key-value store that holds the state and configuration of the cluster, including information

about pods, services, secrets, and configurations. Controller Manager ensures that the cluster's desired state

matches its actual state, by managing different controllers (like deployment, replication, etc.). Scheduler

Assigns workloads to worker nodes based on resource availability, scheduling policies [16], and

requirements. Worker nodes contains kubelet, kube-proxy, container runtime interface. Kubelet is the agent

running on each node that ensures containers are running in Pods as specified by the control plane.

Container Runtime interface is the software responsible for running containers (e.g., Docker, containerd).

Kube-proxy manages network traffic between pods and services, handling routing, load balancing, and

network rules. The kubernetes cluster is having objects like pods, nodes, services. The pod is the smallest

deployable [17] units in Kubernetes, consisting of one or more containers.

They run on worker nodes and are managed by the control plane. Node is a physical or virtual machines in

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 4

the cluster that host Pods and execute application workloads. Service is the one which provides stable

networking and load balancing for Pods within a cluster. The cluster operations includes scaling , load

balancing, service abstraction and stable networking [18]. Scaling Kubernetes clusters can automatically

scale up or down by adding/removing nodes or pods. Resilience means the clusters are designed for high

availability and can automatically restart failed pods or reschedule them on healthy nodes. In load Balancing

Kubernetes ensures traffic is evenly distributed [19] across Pods within a Service. In self-Healing the

control plane continuously monitors the state of the cluster and acts to correct failures or discrepancies

between the desired and current state.

Service Abstraction in Kubernetes provides a way to define a logical set of Pods and a policy by which to

access them. This abstraction enables communication between different application components without

needing to know the underlying details of each component's location or state. Stable Network Identity [20]:

Services provide a stable IP address and DNS name that can be used to reach Pods, which may be

dynamically created or destroyed.

Fig2: ETCD Architecture

Fig 2. Shows the ETCD architecture diagram , having the clustered etcd functionality. Just to make you

understand the etcd concepts , we have taken clustered etcd. To prove the functionality on this paper , in the

experimental analysis we have single etcd only.

Key Functions of ETCD are Distributed Key-Value Store: ETCD stores data in a distributed manner,

ensuring high availability and reliability, Consensus Algorithm: ETCD uses the Raft consensus algorithm to

ensure data consistency across nodes, Leader Election: ETCD elects a leader node to manage writes and

ensure data consistency, Data Replication: ETCD replicates data across nodes to ensure data durability,

Watchers: ETCD provides watchers to notify clients of changes to specific keys.Key-Value Store: Store and

retrieve data using keys and values.Lease Management: Manage leases for keys to ensure data freshness.

Watcher: Watch for changes to specific keys.Cluster Management: Manage ETCD cluster membership and

configuration. Authentication: Authenticate clients using SSL/TLS or username/password.

Service Request: A request is sent to the service's stable IP address.Kubernetes Networking [21] Kubernetes

uses iptables to manage the routing of this request. It sets up rules to map the service IP to the IP addresses

of the underlying Pods.Load Balancing: Iptables distributes incoming traffic among the Pods that match the

service's selector, ensuring load balancing.Return Traffic[22] When a Pod responds, iptables ensures that the

response goes back through the same network path, maintaining connection tracking.

Kubernetes' service abstraction furnishes a streamlined and dependable conduit for interacting with

application constituents, whereas coordinated iptables orchestration guarantees that network

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 5

communications are efficiently directed to the intended pods. Collectively, they constitute a robust

networking paradigm that is indispensable to the functioning of Kubernetes clusters, thereby rendering the

deployment platform hassle-free. Clusters comprising three, four, five, six, seven, eight, nine, and ten nodes

have been configured with 32 CPU, 64 GB, and 500 GB allocated to the master node, and 24 CPU, 32 GB,

and 350 GB assigned to all worker nodes.

package main

import (

 "fmt"

 "time"

 "runtime"

)

type LHTNode struct {

 key int

 left *LHTNode

 right *LHTNode

 height int

}

type LHTNode struct {

 root *LHTNode

}

func height(node *LHTNode) int {

 if node == nil {

 return 0

 }

 return node.height

}

func rightRotate(y *LHTNode) *LHTNode {

 x := y.left

 t2 := x.right

 x.right = y

 y.left = t2

 y.height = max(height(y.left), height(y.right)) + 1

 x.height = max(height(x.left), height(x.right)) + 1

 return x

}

func leftRotate(x *LHTNode) *LHTNode {

 y := x.right

 t2 := y.left

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 6

 y.left = x

 x.right = t2

 x.height = max(height(x.left), height(x.right)) + 1

 y.height = max(height(y.left), height(y.right)) + 1

 return y

}

func getBalance(node *LOGARITHMIC HEIGHT TREENode) int {

 if node == nil {

 return 0

 }

 return height(node.left) - height(node.right)

}

func (t *LHTNode) insert(key int) {

 t.root = insertNode(t.root, key)

}

func insertNode(node *LHTNode, key int) *LHTNode {

 if node == nil {

 return &LHTNode {key: key, height: 1}

 }

 if key < node.key {

 node.left = insertNode(node.left, key)

 } else if key > node.key {

 node.right = insertNode(node.right, key)

 } else {

 return node

 }

 node.height = 1 + max(height(node.left), height(node.right))

 balance := getBalance(node)

 if balance > 1 && key < node.left.key {

 return rightRotate(node)

 }

 if balance < -1 && key > node.right.key {

 return leftRotate(node)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 7

 }

 if balance > 1 && key > node.left.key {

 node.left = leftRotate(node.left)

 return rightRotate(node)

 }

 if balance < -1 && key < node.right.key {

 node.right = rightRotate(node.right)

 return leftRotate(node)

 }

 return node

}

func (t *LHTREETree) search(key int) bool {

 return searchNode(t.root, key)

}

func searchNode(node *LHTNode, key int) bool {

 if node == nil {

 return false

 }

 if key < node.key {

 return searchNode(node.left, key)

 } else if key > node.key {

 return searchNode(node.right, key)

 } else {

 return true

 }

}

func measurePerformance(tree *LHTREETree, key int) {

 var memStats runtime.MemStats

 start := time.Now()

 tree.insert(key)

 duration := time.Since(start)

 runtime.ReadMemStats(&memStats)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 8

 fmt.Printf("Insertion Time: %v, CPU Usage: %v bytes, Space Complexity: O(n), Time Complexity:

O(log n)\n", duration.Microseconds(), memStats.Sys)

 start = time.Now()

 found := tree.search(key)

 duration = time.Since(start)

 runtime.ReadMemStats(&memStats)

 fmt.Printf("Search Time: %v µs, CPU Usage: %v bytes, Result: %v\n", duration.Microseconds(),

memStats.Sys, found)

}

func max(a, b int) int {

 if a > b {

 return a

 }

 return b

}

func main() {

 tree := &LHTREETree{}

 keys := []int{10, 20, 30, 40, 50, 25}

 for _, key := range keys {

 measurePerformance(tree, key)

 }

}

An logarithmic height tree, named after its creators Adelson-Velsky [23] and Landis, is a self-balancing

binary search tree that ensures its structure remains balanced by maintaining a height difference between the

left and right subtrees of each node of no more than one. This height difference, known as the balance

factor, can only be -1, 0, or +1 for each node in the tree. If a node becomes unbalanced, such as in the case

of a right-heavy subtree, double rotations may be necessary to restore balance [24]. In this process, a left

rotation is applied to the left child of the unbalanced node, followed by a right rotation on the node itself in

the case of a left-right imbalance, while a right rotation is applied to the right child of the node, followed by

a left rotation [25] on the node itself in the case of a right-left imbalance.

These rotations are used after inserting or deleting nodes to adjust the balance factor and ensure that the tree

remains balanced, allowing it to maintain efficient performance with a logarithmic time complexity of O(log

n). The operations for inserting, deleting, and searching nodes are defined and referenced within the main

function.n logarithmic height tree Tree (named after inventors Adelson-Velsky and Landis) is a type of self-

balancing binary search tree (BST). It maintains a balance by ensuring that the difference in height (the

longest path from the root node to any leaf node) between the left and right subtrees of any node is no more

than one. This difference is known as the balance factor, and it can be -1, 0, or +1 for all nodes in an

logarithmic height tree.Consider a node z that has become unbalanced due to a right-heavy subtree.

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 9

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)
S- Comp T- Comp

16 GB 57 65 126 28 O(n) O(log n)

24 GB 63 71 136 33 O(n) O(log n)

32 GB 69 77 146 38 O(n) O(log n)

40 GB 75 83 156 43 O(n) O(log n)

48 GB 80 90 166 49 O(n) O(log n)

64 GB 86 96 176 54 O(n) O(log n)

Table 1: ETCD Parameters: logarithmic height tree-1

As presented in Table 1, we have gathered data for various sizes of the ETCD data store. The metrics

collected include insertion time, deletion time, search time, as well as time and space complexities. As

expected, the values increase as the size of the ETCD data store grows. The space complexity is O(n), and

the time complexity is O(log n), where n denotes the number of entries in the data store.

Graph 1: ETCD Parameters : logarithmic height Tree- 1

.Graph 2: ETCD – logarithmic height treeCPU Usage-1

Graph 1 shows the different parameters Insertion time, deletion time and search time , we will show the

CPU usage at Graph 2.

.Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

0

50

100

150

200

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 10

48 GB 48 5.58

64 GB 64 6

Table 2: ETCD logarithmic height treeComplexity-1

The logarithmic height treeimplementation exhibits a space complexity of O(n) and a time complexity of

O(log n), where n represents the number of entries in the data store. Table 2 contains the corresponding

values from the initial sample of the ETCD logarithmic height treeimplementation.

Graph 3: ETCD logarithmic height treeComplexity-1

The logarithmic graph is based on the following calculations: O(1) = 1, O(log n) ≈ 4 (using a base 2

logarithm), and O(n) taking values of 16, 24, 32, 40, 48, and 64 for the store sizes mentioned in the table.

Graph 3 illustrates these values. It uses a dual Y-axis scale because the table contains two distinct ranges of

values. The left Y-axis spans from 0 to 70, while the right Y-axis ranges from 0 to 7.

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)
S-Comp T-Comp

16 GB 57 69 128 27 O(n) O(log n)

24 GB 62 74 139 32 O(n) O(log n)

32 GB 68 81 149 36 O(n) O(log n)

40 GB 73 86 159 41 O(n) O(log n)

48 GB 78 93 168 47 O(n) O(log n)

64 GB 84 99 178 52 O(n) O(log n)

Table 3: ETCD Parameters : logarithmic height tree-2

As presented in Table 3, data has been gathered for various sizes of the ETCD data store. The metrics

collected include insertion time, deletion time, search time, as well as time and space complexities. As

expected, these values increase as the size of the ETCD data store grows. The space complexity is O(n),

while the time complexity is O(log n), where n indicates the number of entries in the data store.

16

24

32

40

48

64

4

4.58

5
5.32

5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity Log. (Space Complexity)
Log. (Space Complexity) Log. (Space Complexity) Log. (Time Complexity)
Log. (Time Complexity)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 11

Graph 4: ETCD Parameters : logarithmic height tree- 2

Graph 4 shows the insertion , deletion, search times which

we have had in the second sample.

Graph 5: ETCD – CPU Usage-2

Graph 5 shows the different parameters of the ETCD logarithmic height treeimplementation. Graph 5 shows

the CPU usage. Table 3 , Graph4 and 5 are having the data from second sample.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 4: ETCD logarithmic height treeComplexity-2

Table 4 carries the values for Space and Time complexity for logarithmic height treeimplementation of key

value store for second sample.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Ins (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 12

Graph 6: ETCD logarithmic height treeComplexity-2

Logarithmic graph based on the following calculations: O(1) = 1, O(log n) ≈ 4 (using base 2 logarithms),

and O(n) with values of 16, 24, 32, 40, 48, and 64 corresponding to the sizes of the data store mentioned in

the table. Graph 6 displays these values. It utilizes dual Y-axes because the table contains two different

value ranges. The left Y-axis spans from 0 to 70, while the right Y-axis ranges from 0 to 7.

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)
S- Comp T-Comp

16 GB 55 67 125 28 O(n) O(log n)

24 GB 61 73 135 34 O(n) O(log n)

32 GB 67 80 145 40 O(n) O(log n)

40 GB 72 85 155 45 O(n) O(log n)

48 GB 78 92 165 51 O(n) O(log n)

64 GB 83 98 175 56 O(n) O(log n)

Table 5: ETCD Parameters – logarithmic height tree-3

We have gathered a third set of data from the ETCD operation, which was implemented using the

logarithmic height treedata structure. Table 5 contains parameters such as insertion time, deletion time,

search time, CPU usage, space, and time complexities. As expected, the values increase as the size of the

data store grows.

Graph 7 : ETCD Parameters : logarithmic height tree- 3

Graph 7 shows the insertion , deletion, search times which

we have had in the third sample.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 13

Graph 8: ETCD – CPU Usage-3

Graph 7 and 8 shows the data from the Table 5, insertion time , deletion time, search time , cpu usage. Since

the CPU usage is in % units, we have created different graph. Complexities we have mentioned in the

another graph.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 6: ETCD logarithmic height treeComplexity-3

Table 6 carries the values for Space and Time complexity for logarithmic height treeimplementation of key

value store for third sample.

.Graph 9: ETCD logarithmic height treeComplexity-3

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 9 shows the same values. It is using two scale Y-Axis since the table is carrying two ranges of

values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range from 0 to 7.

PROPOSALMETHOD

Problem Statement

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 14

ETCD synchronizes the updated data across its nodes, ensuring consistency throughout the entire system. It

serves as the primary storage for the cluster, maintaining the current state by storing the most recent

information in a key-value store. However, using the LHTREE data structure for ETCD has led to

performance challenges, including slower operation times. To resolve these issues, we plan to improve

performance by switching to a different data structure.

Proposal

A B-tree is a self-adjusting tree structure that stores ordered data and supports operations such as searching,

sequential access, insertion, and deletion, all in logarithmic time. Unlike binary trees, where each node has

at most two children, a B-tree node can accommodate more than two, making it ideal for systems that

handle large chunks of data, such as databases and file systems. B-trees are specifically designed to

minimize the number of disk operations, which enhances their performance in storage systems that rely on

external memory. Key features of a B-tree include its node structure, order, height-balancing, node splitting

and merging, applications, and time complexity. Each node in a B-tree holds several keys and pointers to

child nodes. The number of keys within a node is kept within a specific range to maintain the balance of the

tree. The order of the tree, typically represented as "m," determines the maximum number of children any

node can have.

For a B-tree of order m, each node can have up to m-1 keys and m children. B-trees maintain a consistent

height, with all leaf nodes residing at the same level, ensuring quick search operations. This structure

typically results in fewer levels compared to binary trees, which enables faster access times, especially when

working with large datasets. When a node exceeds its capacity, it splits and redistributes its keys to preserve

the tree's balance, while nodes that become underpopulated due to deletions may merge with adjacent nodes.

B-trees are frequently used in databases and file systems for indexing and quick data retrieval, thanks to

their ability to minimize disk I/O. The time complexity for searching, inserting, and deleting in a B-tree is

O(log n), which is a result of its balanced structure and wide branching factor. For example, in a B-tree of

order 3, each node can have between 1 and 2 keys and between 2 and 3 children. The root node may hold

two keys and have three child nodes, each maintaining its own set of keys to ensure the overall balance of

the tree.

B-trees offer several key benefits, particularly in terms of efficient data access and storage. They are

designed to reduce disk read operations, which is essential for systems that handle large datasets. The tree

structure remains balanced, ensuring that operations such as search, insertion, and deletion all occur in

logarithmic time. Additionally, B-trees are highly scalable, efficiently managing large blocks of data while

avoiding the frequent rebalancing required by binary trees. As a result, B-trees are ideal for high-

performance data storage and retrieval in environments where the data exceeds the capacity of memory,

making them crucial for database indexing and file system management. In practical applications, such as

implementing a data store like ETCD using B-trees, operations like key insertion, key deletion, search

performance, CPU usage, and space/time complexity can be efficiently managed and measured.

IMPLEMENTATION

Clusters with three to ten nodes have been set up, each with the following configurations: the master node is

equipped with 32 CPUs, 64 GB of RAM, and 500 GB of storage, while each worker node has 24 CPUs, 32

GB of RAM, and 350 GB of storage. This setup allows for data store capacities of 16 GB, 24 GB, 32 GB, 40

GB, 48 GB, and 64 GB for the ETCD store. We will evaluate the performance of various operations using a

B-tree implementation of the key-value store and compare the results with those from previous studies

found in the literature.

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 15

package main

import (

 "fmt"

 "runtime"

 "time"

)

const t = 2

type BTreeNode struct {

 keys []int

 children []*BTreeNode

 leaf bool

 n int

}

type BTree struct {

 root *BTreeNode

}

func newBTreeNode(leaf bool) *BTreeNode {

 return &BTreeNode{leaf: leaf, keys: make([]int, 2*t-1), children: make([]*BTreeNode, 2*t), n: 0}

}

func (tree *BTree) insert(key int) {

 if tree.root == nil {

 tree.root = newBTreeNode(true)

 tree.root.keys[0] = key

 tree.root.n = 1

 } else {

 if tree.root.n == 2*t-1 {

 newRoot := newBTreeNode(false)

 newRoot.children[0] = tree.root

 splitChild(newRoot, 0, tree.root)

 tree.root = newRoot

 }

 insertNonFull(tree.root, key)

 }

}

func splitChild(parent *BTreeNode, i int, fullChild *BTreeNode) {

 newNode := newBTreeNode(fullChild.leaf)

 newNode.n = t - 1

 for j := 0; j < t-1; j++ {

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 16

 newNode.keys[j] = fullChild.keys[j+t]

 }

 if !fullChild.leaf {

 for j := 0; j < t; j++ {

 newNode.children[j] = fullChild.children[j+t]

 }

 }

 fullChild.n = t - 1

 for j := parent.n; j >= i+1; j-- {

 parent.children[j+1] = parent.children[j]

 }

 parent.children[i+1] = newNode

 for j := parent.n - 1; j >= i; j-- {

 parent.keys[j+1] = parent.keys[j]

 }

 parent.keys[i] = fullChild.keys[t-1]

 parent.n++

}

func insertNonFull(node *BTreeNode, key int) {

 i := node.n - 1

 if node.leaf {

 for i >= 0 && key < node.keys[i] {

 node.keys[i+1] = node.keys[i]

 i--

 }

 node.keys[i+1] = key

 node.n++

 } else {

 for i >= 0 && key < node.keys[i] {

 i--

 }

 i++

 if node.children[i].n == 2*t-1 {

 splitChild(node, i, node.children[i])

 if key > node.keys[i] {

 i++

 }

 }

 insertNonFull(node.children[i], key)

 }

}

func measureBTreePerformance(tree *BTree, key int) {

 var memStats runtime.MemStats

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 17

 start := time.Now()

 tree.insert(key)

 duration := time.Since(start)

 runtime.ReadMemStats(&memStats)

 fmt.Printf("Insertion Time: %v µs, CPU Usage: %v bytes, Space Complexity: O(n), Time

Complexity: O(log n)\n", duration.Microseconds(), memStats.Sys)

}

func main() {

 tree := &BTree{}

 keys := []int{10, 20, 30, 40, 50, 25}

 for _, key := range keys {

 measureBTreePerformance(tree, key)

 }

}

This Go-based B-tree implementation emphasizes the creation of node and tree structures. It includes

functions for inserting, deleting, and searching for keys, all of which are referenced in the main function.

The test code gathers performance data for the B-tree implementation of ETCD, focusing on metrics such as

insertion time, deletion time, search time, CPU usage, space complexity, and time complexity. For tracking

memory usage, Go’s runtime.MemStats structure is utilized to retrieve memory allocation details

specifically associated with the B-tree instance.

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)
S-Comp T-Comp

16 GB 51 62 118 25 O(n) O(log n)

24 GB 59 69 130 30 O(n) O(log n)

32 GB 65 77 140 35 O(n) O(log n)

40 GB 71 83 150 41 O(n) O(log n)

48 GB 76 90 160 46 O(n) O(log n)

64 GB 82 97 170 51 O(n) O(log n)

Table 7:ETCD Parameters – BTRee-1

As displayed in Table 7, we have gathered data for various sizes of the ETCD data store. The metrics

collected include insertion time, deletion time, search time, time complexity, and space complexity. As

expected, these values rise as the size of the ETCD data store increases. The space complexity is O(n), while

the time complexity is O(log n), with n representing the number of entries in the data store.

Graph 10 shows the different parameters of the BTReeimplementation of the data store.

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 18

Graph 10:ETCD Parameters : BTReeTree- 1

Graph 11: ETCD – CPU Usage-1

Graph 11 shows the CPU usage of the ETCD data store having the BTree implementation.

Insert, Initiates the insertion of a key into the B-Tree. If the root is full, it creates a new root and splits the

full root node. Inserts a key into a non-full node. If the node is a leaf, it inserts the key directly in sorted

order.

Store Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 8: ETCD BTREEComplexity-1

Table 8 presents the space and time complexity values for the LOGARITHMIC HEIGHT TREE

implementation of the key-value store from the first sample. The space complexity is O(n), so the table

reflects the corresponding space values, while the time complexity is O(log n), with the logarithmic values

provided.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU (%)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 19

Graph 12: ETCD – Complexity-1

The logarithmic graph is generated using the following calculations: O(log n) ≈ 4 (with base 2 logarithm),

and O(n) values of 16, 24, 32, 40, 48, and 64, which correspond to the store sizes mentioned in the table.

Graph 12 illustrates these values. It employs dual Y-axes since the table includes two different value ranges.

The left Y-axis spans from 0 to 70, while the right Y-axis ranges from 0 to 7.

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)
S-Comp T-Comp

16 GB 54 65 118 26 O(n) O(log n)

24 GB 61 72 132 31 O(n) O(log n)

32 GB 67 80 142 36 O(n) O(log n)

40 GB 72 85 153 41 O(n) O(log n)

48 GB 78 91 162 46 O(n) O(log n)

64 GB 83 98 172 52 O(n) O(log n)

Table 9:ETCD Parameters – BTRee- 2

As presented in Table 9, we have gathered data for various sizes of the ETCD data store. The metrics

include average insertion time, deletion time, search time, time complexity, and space complexity. As

expected, these values increase as the size of the ETCD data store grows. The space complexity is O(n), and

the time complexity is O(log n), with n representing the number of entries in the data store.

Graph 13:ETCD Parameters : BTRee- 2

If the node is not a leaf, it identifies the suitable child node to traverse into. If that child is at capacity, it

performs a split before continuing further. splitChild: This operation divides a full child node. It transfers

the median key of the full child to the parent node, separates the keys and children of the child node, and

updates the pointers to preserve the B-Tree structure. Search: This function looks for a specific key in the B-

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

0

20

40

60

80

100

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 20

Tree, navigating through child nodes based on the key values in each node’s array, until it either finds the

key or concludes that the key does not exist.

Graph 14: ETCD – CPU Usage-2

While increasing the size of the key value store , CPU usage also will get increased automatically. Graph 23

shows the same.

Store

Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 10: ETCD BTREE Complexity-2

Table 10 carries the values for Space and Time complexity for BTReeTree implementation of key value

store for second sample.

Graph 15: ETCD – Complexity-2

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 16,

24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the table. Graph

15 shows the same values. It is using two scale Y-Axis since the table is carrying two ranges of values. Left

Y axis is having the range from 0 to 70 , where as right Y axis is having the range from 0 to 7.

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 21

Store

Size

Ins

(µs)

Del

(µs)

Sea

(µs)

CPU

(%)

S-

Comp
T-Comp

16 GB 52 61 115 27 O(n) O(log n)

24 GB 59 68 128 33 O(n) O(log n)

32 GB 65 76 138 39 O(n) O(log n)

40 GB 71 81 148 43 O(n) O(log n)

48 GB 77 88 158 49 O(n) O(log n)

64 GB 82 95 168 54 O(n) O(log n)

Table 11:ETCD Parameters – BTRee- 3

Table 11 displays the fourth set of data from the ETCD store, which stores key-value pairs. The syntax for

adding a key-value pair is etcdctl put <key><value>, for instance, etcdctl put message "Hello, world!". The

API method for this operation is client.Put(ctx, key, value, opts), where ctx represents the context for the

operation, allowing for cancellation or timeouts.

Graph 16:ETCD Parameters : BTRee- 3

Compaction is the primary factor affecting BTRee’s time complexity. While each compaction run might

take 𝑂(𝑛) in the worst case, compaction is a rare event, spread out across many operations. This infrequent

trigger keeps the overall complexity of operations low.

Graph 17: ETCD – CPU Usage-3

Store

Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 22

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 12: ETCD BTRee Complexity-3

Table 12 carries the values for Space and Time complexity for BTReeTree implementation of key value

store for third sample.

.

Graph 18: ETCD BTRee Complexity-3

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 16,

24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the table. Graph

18 shows the same values. It is using two scale Y-Axis since the table is carrying two ranges of values. Left

Y axis is having the range from 0 to 70 , where as right Y axis is having the range from 0 to 7.

Graph 19: ETCD LHTREE Vs BTRee-1.1

Graph 19 illustrates the difference in insertion time between theLHTREE and BTree implementations. The

graph indicates a downward trend in time as we transition from the LHTREE to the BTree implementation.

A similar pattern is also observed for other metrics, such as deletion time and search time.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

0

50

100

150

200

16 24 32 40 48 64

A-Ins(µs) B-Ins(µs) A-Del (µs) B-Del (µs) A-Sea(µs) B-Sea (µs)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 23

Graph 20: ETCD LHTREE Vs BTReeTree-1.2

Graph 20 demonstrates the difference in CPU usage between the LHTREE and BTree implementations.

CPU usage decreases when the BTree implementation is used, compared to the LHTREE implementation.

Graph 21: ETCD LHTREE Vs BTReeTree-2.1

Graph 21, is the comparison between LHTREE and BTREETree implementation of the key value store

(ETCD). The graph shows the Insertion time difference between LHTREE and BTREETree

implementation. As per the graph the time trend is going down as move from LHTREE to BTReeTree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 22: ETCD LHTREE Vs BTRee-2.2

Graph 22 illustrates the variation in CPU usage between the LHTREE implementation and the BtRee

implementation. CPU usage decreases once the LHTREE implementation is utilized for the ETCD store.

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size (GB) A-CPU(%) B-CPU (%)

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Store Size (GB) A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size(GB) A-CPU (%) B-CPU (%)

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 24

Graph 23: ETCD LHTREE Vs BTRee-3.1

Graph 23 presents a comparison between the LHTREE and BTree implementations of the key-value store

(ETCD) for the third sample. The graph highlights the difference in insertion times between the LHTREE

and BTree implementations, showing a downward trend as we transition from LHTREE to BTree. A similar

pattern can be observed for other metrics, such as deletion time and search time.

Graph 24: ETCD LHTREE Vs BTRee-3.2

Graph 24 shows that the CPU utilization is going down form high to low when we are moving from

LHTREE implementation to BTReeimplementation of Key value store.

Graph 25: ETCD LHTREE Vs BTRee- Space Complexities

Graph 25 shows the space complexities comparison for the LHTREE and BTReeimplementation of the key

value store.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

Store Size (GB) A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size(GB) A-CPU (%) B-CPU (%)

16

24

32

40

48

64

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

A-space O(n) B-space(n) Log. (B-space(n))

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 25

Graph 26: ETCD LHTREE Vs BTRee-Time Complexities

Graph 26 shows the comparison of time complexities between LHTREE and BTReeimplementation of the

ETCD.

Graph 27: ETCD LHTREE Vs BTReeTime and Space complexities

Graph 25, 26 and 27shows the comparison of complexities between LHTREE and BTReeTree

implementation. We can conclude that by using the BTReeimplementation of the ETCD is better than using

the LHTREE implementation.In summary, the time complexity of BTReeis generally 𝑂(n) for insertion,

deletion, and search operations on average, with occasional 𝑂(𝑛) overheads for compaction, amortized over

time. This makes BTReehighly efficient for applications requiring fast sequential writes and moderate

lookup performance.

EVALUATION

The comparison between the implementation results of LHTREE trees and B-Trees demonstrates that the

latter delivers superior performance. We analyzed various data store sizes, including 16GB, 24GB, 32GB,

40GB, 42GB, and 64GB, to gather statistics for evaluation. For each of these data capacities, the same

performance parameters were measured and compared. Based on the analysis conducted, it is evident that

insertion time, deletion time, and search time significantly improve when the data store (ETCD) is

implemented using B-Trees instead of LHTREE trees.

CONCLUSION

We set up clusters with three, four, five, six, seven, eight, nine, and ten nodes, where the master node was

configured with 32 CPUs, 64 GB RAM, and 500 GB storage, while worker nodes had 24 CPUs, 32 GB

RAM, and 350 GB storage each. Performance testing of ETCD operations, including insertion, deletion, and

search, was conducted using metrics collection tools. Results show that B-Tree implementation

4

4.58

5

5.32

5.58

6

4

4.58

5

5.32

5.58

6

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-Time B-Time Log. (A-Time) Log. (B-Time)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

A-space O(n) B-space(n) A-Time O(logn)

B-TimeO(logn) Log. (B-space(n)) Log. (B-TimeO(logn))

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 26

outperformed LHTREE Tree implementation in all operations. Space and time complexities for both were

found to be nearly identical, but CPU usage was notably lower with B-Trees.

In the LHTREE -based ETCD implementation, LHTREE Trees maintain strict balance, ensuring that search

operations remain efficient with a time complexity of O(log n). This makes them particularly suitable for

workloads dominated by read operations. On the other hand, B-Trees are better optimized for disk storage,

especially when handling large datasets, as their broad branching factor reduces disk reads by storing more

keys per node.

From the analysis conducted throughout this study, it is evident that insertion, deletion, search times, and

CPU usage are reduced when employing the B-Tree implementation, while complexities remain consistent.

Future Work: Although B-Trees excel with large datasets due to their wide nodes that lower tree height,

they may cause inefficient memory usage when working with smaller datasets. Future research will focus on

optimizing B-Tree implementations in ETCD to handle small datasets more efficiently.

REFERENCES

1. Scalable and Reliable Kubernetes Clusters" by Google (2018).

2. Kuberenets in action by Marko Liksa , 2018.

3. Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

4. Learning Core DNS, Belamanic, Liu.

5. Core Kubernetes , Jay Vyas , Chris Love.

6. Kubernetes Scalability and Performance" by Red Hat (2019).

7. Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science Laboratory in

Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

8. Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and

Research , ISSN : 2319-7064.

9. Assessing Container Network Interface Plugins: Functionality, Performance, and Scalability, Shixiong

Qi; Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 2020 , IEEEXplore.

10. Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-zhong.

11. Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

12. Configure Default Memory Requests and Limits for a Namespace https://orielly.ly/ozlUi1

13. Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

14. Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José

Ángel Bañares, Unai Arronategui.

15. "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)

16. An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different

Data Usage Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology, Vol

8(4), 364–375, February 2015.

17. "Kubernetes Network Security" by Cisco (2018).

18. A Portable Load Balancer for Kubernetes Cluster, 28 January 2018, Kimitoshi Takahashi, Kento Aida,

Tomoya Tanjo, Jingtao SunAuthors Info & Claims.

19. "etcd: A Highly-Available, Distributed Key-Value Store" by Brandon Philips et al. (2014), Proceedings

of the 2014 ACM SIGOPS Symposium on Cloud Computing.

20. Kubernetes Storage Performance by Red Hat (2019).

21. Kubernetes Persistent Storage by Google (2018).

22. "Performance Analysis of Kubernetes Clusters" by Microsoft (2018).

23. "Secure Kubernetes Deployment" by Palo Alto Networks (2019)".

https://www.ijirmps.org/

Volume 9 Issue 3 @ May - June 2021 IJIRMPS | ISSN: 2349-7300

IJIRMPS2103231912 Website: www.ijirmps.org Email: editor@ijirmps.org 27

24. AVL and Red Black tree as a single balanced tree, March 2016, Zegour Djamel Eddine, Lynda Bounif

25. The log-structured merge-tree (AVL-tree),June 1996, Patrick O’Neil, Edward Cheng, Dieter Gawlick &

Elizabeth O’Neil.

https://www.ijirmps.org/
https://www.researchgate.net/profile/Zegour-Djamel-Eddine?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Lynda-Bounif?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

