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Abstract 

A smart banking cyber-physical system's (SBCPS) primary focus should be on preventing and 

detecting fraud. Suspicious transaction detection is an essential component of fraud detection systems, 

among other forms of financial fraud such as forgery, changed checks, impersonation, and identity 

theft. Performing early scammer detection is usually not viable. Combining risk infiltration with 

sensing and detection is necessary to alleviate SBCPS dangers. In order to keep tabs on the credentials 

that the interacting agent has supplied, a safe and reliable method is very necessary. Less competent, 

trustworthy, and accurate are the traditional methods offered in the literature. In this study, we 

introduced a novel approach for detecting suspicious transactions in Smart Banking Cyber-Physical 

Systems by utilizing the Deep Ridge Prophet Network based on deep learning techniques. Here 

initially the dataset was retrieved from the public database. Then the data can be processed using the 

remit norma filter. Then the features can be extracted using the singular value factorization analysis. 

Then the specialized features can be extracted using a hybrid Adam wave optimization algorithm. 

Finally, the suspicious transaction was identified using the Deep Ridge Prophet network. The overall 

experimentation was carried out in a Python environment.  From the analysis, it was identified that 

the proposed method achieved an impressive 99.04% accuracy and a 0.02% error rate in categorizing 

transactions as genuine or fraudulent. This demonstrates the effectiveness and reliability of the 

method, offering a time-efficient and high-performance solution for fraud detection in SBCPS, 

especially critical in the context of post-quantum security. The integration of optimization and deep 

learning enhances both detection accuracy and system resilience, making it an ideal choice for modern 

banking systems. 

 

Keywords: Smart Banking Cyber-Physical System, Suspicious Transaction, Deep Ridge Prophet 

Network 

I. INTRODUCTION 

Suspicious transaction detection or Fraud detection has become a cornerstone of modern banking systems, 

particularly within Smart Banking Cyber-Physical Systems (SBCPS), where the convergence of physical 

banking infrastructure and digital platforms introduces new complexities and challenges. As the 

sophistication of cybercriminals continues to grow, the need for robust systems that can accurately detect 

suspicious activities, such as identity theft, forgeries, and impersonation, becomes increasingly critical. 

Suspicious transaction detection, in particular, is a vital component in identifying fraudulent behavior and 

preventing significant financial losses. However, detecting fraud in real-time poses a challenge due to the 
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diverse and constantly evolving nature of fraudulent tactics, as well as the inherent limitations of traditional 

methods. 

Traditional fraud detection techniques often rely on rule-based systems, statistical models, and anomaly 

detection, which, while useful in certain contexts, tend to lack the robustness, scalability, and accuracy 

required to address the rapidly increasing volume of transactions and the sophistication of modern fraud 

schemes. Additionally, these systems struggle to adapt to the ever-changing nature of fraud, as they typically 

cannot learn and improve with exposure to new types of fraudulent behavior. This underscores the need for 

more advanced methods capable of not only detecting known fraud types but also adapting to novel fraud 

patterns in real-time. 

In response to these challenges, this study proposes a novel approach that leverages deep learning 

techniques, specifically the Deep Ridge Prophet Network, for detecting suspicious transactions within 

SBCPS. This methodology integrates multiple advanced components to enhance fraud detection capabilities. 

The first step in the approach involves retrieving a publicly available banking dataset to train and validate 

the model. Preprocessing of this dataset is performed using a remit normal filter to clean and standardize the 

data, removing inconsistencies and noise. Subsequently, singular value factorization (SVF) is applied to 

extract specialized features that highlight key transaction patterns, which are then enhanced through a hybrid 

Adam wave optimization algorithm. This combination of feature extraction and optimization ensures that the 

deep learning model can efficiently learn and adapt to complex patterns in transaction data. 

At the core of this methodology is the Deep Ridge Prophet Network, which is trained to classify transactions 

as either genuine or fraudulent based on the extracted features. This network is designed to offer superior 

performance in terms of both speed and accuracy compared to traditional fraud detection models. By 

integrating these advanced techniques, the proposed method not only increases detection accuracy but also 

enhances the resilience and scalability of fraud detection systems, making it well-suited for modern banking 

environments. The flexibility and adaptability of deep learning enable the model to continuously improve as 

new data is provided, ensuring its effectiveness even as fraud techniques evolve. 

 

In summary, our contributions are as follows:  

• We design a novel model for suspicious transaction prediction 

• We provide a formal feature analysis of the proposed scheme, proving its resistance against common 

attacks.  

• We implement the scheme and benchmark its performance, demonstrating a lower error rate  

The remaining section of the paper can be organized as follows, section 2 illustrates the literature survey, 

section 3 makes a clear depiction of the proposed methodology, section 4 illustrates the experimental 

analysis of the suggested methodology, and finally, section 5 concludes the article. 

 

II. RELATED WORKS 

A. RISK-BASED APPROACH AND INTERNAL CONTROL RISKS  

An innovative method for anti-money-laundering (AML) operations, the Risk-Based Approach (RBA) 

assigns varying degrees of oversight to different industries according to their potential for money-laundering 

and terrorist-financing-related crimes. When people engage in activities that conceal or disguise the 

acquisition or disposal of property while concealing facts, they are engaging in money laundering. This may 

be done to avoid paying taxes on these gains or to cover up other illicit or criminal activities. The legislation 

governing the reporting and use of certain financial transaction data in South Korea provides a definition of 

money laundering. The three-stage model established by the U.S. Customs Service—placing, layering, and 

integration—forms the basis of the general theory of money laundering [8], [9]. In order to effectively 
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manage money laundering and avoid the funding of terrorism, supervisors must take the RBA viewpoint into 

account while carrying out their duties [10]. From the standpoints of regulatory requirements and RBA, risk 

assessment is essential for the efficient and cost-effective implementation of customer due diligence 

operations. Risk assessments for money laundering mainly include organisational responsibilities and 

conformity with regulatory mandates [11]. To make the current anti-money laundering procedures run more 

smoothly, an RBA-based AML system may be implemented. For one thing, it can meet the operational 

needs of the RBA's enhanced anti-money-laundering system, which is mandated by financial authorities 

through different programs; and for another, it can build a thorough risk assessment framework based on 

preventive, risk-management-centered, and business-department-led approaches. Improved client 

verification, thorough risk assessment, currency transaction report, suspicious transaction report, and 

indicator reporting to KoFIU are all aspects of the program's management and support. Failure to comply 

with legislation or to take adequate precautions against the possibility of money laundering (ML) or terrorist 

financing (TF) is known as internal control risk. Laws pertaining to the reporting of financial transactions, 

the prevention of terrorist funding, and anti-money-laundering policies for businesses determine the 

categorisation of this risk. Overall control, internal control, risk management, monitoring, reporting 

management, and customer verification are some of the related categories. The approach for assessing risks 

in financial institutions' internal controls is shown in Figure 1 [6].  

Given the specifics of financial institutions' operations and dealings, any risk assessment pertaining to 

money laundering or the funding of terrorism must take these factors into account. After deducting the 

internal control level from the inherent risks of financial institutions, the residual risk may be calculated. The 

final risk assessment is based on the entire loss costs and cascade repercussions. The risk identification step 

of internal control risk analysis involves analysing the type, source, probability, and consequences of ML/TF 

risks. Moreover, at this point, we assess the degree of risk by analysing the internal control risks that cannot 

avoid or reduce ML/TF threats. This allows us to estimate the probability and size of losses. We identify and 

analyse the risks connected with internal controls once we've identified various risk elements in the 

organisation and the business environment.  

B. SUSPICIOUS TRANSACTION DETECTION MODEL FOR INTERNAL CONTROL USING 

MACHINE LEARNING 

A variety of approaches that may ease the AML process are required due to the gravity of the problem and 

the difficulty of effectively identifying money laundering tendencies. In recent years, many machine learning 

(ML) methods have been developed to bolster anti-money-laundering (AML) initiatives. The sheer volume 

of transactions and the ever-shifting nature of illicit behaviour make it very difficult for financial institutions 

to implement an effective AML system. Applying learning methodologies that are suitable for the original 

dataset or data source provider allows for the construction of an effective AML system. Furthermore, in 

order to identify money laundering groups, trends, anomalies, and crimes, it is crucial to conduct analysis, 

evaluations, and comparisons of different AML detection approaches. Specifically, it is essential to leverage 

a variety of ML approaches, techniques, and technologies for this goal, preferably ones that are composites 

of diverse methods rather than belonging to a single ML approach [12], [13]. It's worth noting that rule-

based systems were among the first to attempt to combat money laundering. The year 1995 saw the creation 

of these systems [14]. Decision trees were used to establish the very complicated underlying rules [15]. Even 

while the established protocols can spot money launderers' schemes, the technology isn't adaptable, it's not 

automated, and it can't identify different kinds of money laundering schemes. 2) One of the most effective 

supervised learning methods for classification and regression is decision tree (DT). DT makes use of data 

characteristics to develop decision rules that may be used to predict the values of a target variable [16], [17]. 
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By statistically analysing event situations according to the access environment and information about 

irregular financial transaction types, a DT-based suspicious transaction detection model for internal controls 

produces detection rules. It generates hypotheses and uses DTs to build rules with high occurrence 

probability by analysing data connected to previous financial transaction patterns. The system then uses the 

found rules to generate strategies for improving the detection rate [18]. Thirdly, one kind of supervised 

machine learning is the Support Vector Machine (SVM), which is used for regression and classification. 

Using this strategy, we want to locate, with the greatest possible margin, a differentiator—a super vector—

between pairs of data points that belong to separate classes. As the super vector defines the distance between 

the two classes, margin is the magnitude of that distance. Accuracy in classifying fresh data points improves 

with increasing margin. Margin, which is defined as the distance between the super vector and the nearest 

training sample, is an alternative viewpoint that offers a strong and versatile supervised ML technique [19], 

[20], [21]. Some internal control models that use support vector machines to identify suspicious transactions 

look for certain traits in the event occurrence access environment [22]. 4) A kind of AI called a deep neural 

network (DNN) mimics the way the human brain works. The data-driven categorisation capabilities of a 

DNN are imparted to its many hierarchical levels via training. Information may be abstracted by DNN by 

combining several nonlinear transformation algorithms. The standard architecture of a DNN, as shown in 

Figure 2, consists of three layers: input, output, and hidden layers between the two [26]. These layers are 

described in references [23], [24], and [25]. This framework allows for the automatic extraction of features. 

More training data means better performance from DNNs, and they outperform other ML algorithms when it 

comes to prediction [27]. A DNN's performance in learning patterns of fraudulent conduct within the 

banking sector is also critical for its use in an internal control suspicious transaction detection model. 

Automated activities like analysing complicated nonlinear functions and verifying relationships between 

input numbers are performed by DNNs. More and more areas are finding uses for DNNs as a result of 

improvements in technology and novel methods. "Deep learning" describes a set of methods for training 

NNs. Various domains have seen these algorithms' outstanding performance, including picture recognition, 

voice recognition, prediction, NLP, and personal data management [28], [29]. The purpose of implementing 

DNNs into the internal control suspect transaction detection model is to help identify potentially fraudulent 

financial transactions by learning the traits and patterns associated with such activity [30]. 

C. MODEL FOR COMBATING MONEY LAUNDERING  

Researchers are making headway in the study of AML thanks to the development of DNN technology. When 

used to AML, deep learning offers several benefits over more conventional models like rule and scoring 

models. Due to their rule-based approach to detecting suspicious transactions, classical statistical approaches 

(rule and score methods) provide findings that are straightforward to understand and explain in research 

scenarios. On top of that, they are good at coping with sparse data. Alternatively, a great deal of research has 

been conducted at financial institutions about DNN-based AML models. These models are trained to identify 

suspicious transactions via the use of labelled datasets for supervised learning. The preparation processes 

described in the aforementioned literature [28] are shown in Figure 3. Random forest, decision tree, and 

naive Bayes are just a few of the ML algorithms that have been tested for their ability to identify 

questionable financial transactions [12]. The incorporation of date characteristics into the core components 

of autoencoder (AE), variational autoencoder (VAE), and generative adversarial networks have also been 

explored in order to capture time-related fraud tendencies [31]. Novel attack approaches render traditional 

ML algorithms employed in AML models inefficient. Nevertheless, by breaking away from conventional 

methods, the AE methodology is able to successfully identify patterns over time, which enhances 

explainable AI research and helps us comprehend how black-box models function [32], [33], and [34]. 
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CI. PROPOSED WORK 

This research presents a new framework technique for accurately identifying suspicious transactions. Figure 

1 depicts the general sequence of the proposed technique. 

 

 
Figure 1 Schematic representation of the suggested methodology

A. Dataset 

B. The dataset contains transactions made by credit cards in September 2013 by European cardholders. 

This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 

transactions. The dataset is highly unbalanced, the positive class (frauds) accounts for 0.172% of all 

transactions. 

C. Preprocessing 

The "Remit Norma Filter" can be interpreted as a data preprocessing method combining normalization and 

outlier removal to prepare data  

In normalization, the data is transformed such that each feature has a mean of 𝟎 and a standard deviation of 

𝟏, using the following equation: 

𝑍 =
𝑥−𝜇

𝜎
                                                                 (1) 

Where: 
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• 𝑥 is an individual data point, 

• 𝜇 is the mean of the feature, 

• 𝜎 is the standard deviation of the feature. 

This ensures that the data is centered around 0, and the spread is standardized across all features. 

Alternatively, Min-Max scaling is often used to scale data into a fixed range, typically between [0,1], using 

the equation: 

𝑥scaled =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
                                            (2) 

This technique ensures that the data is mapped within a defined range, which is particularly useful when 

using algorithms that assume the data is within a certain range. 

The second step of the "Remit Norma Filter" involves outlier removal, a critical step in improving model 

performance. Outliers can severely affect the results of learning models. Outliers are typically identified 

using Z-scores, where data points with a Z-score greater than 3 or less than -3 are considered outliers and are 

removed. The condition for identifying an outlier is given by: 

|𝑍| > 3  (outlier)                                                     (3) 

Where 𝑍 is the Z-score of a data point. This threshold ensures that extreme values, which are far away from 

the mean, do not distort the learning process. 

This preprocessing ensures that the dataset is clean, normalized, and suitable for further analysis or model 

training, particularly for fraud detection tasks where accurate and reliable data is essential. 

D. Feature extraction 

In this section, we describe the feature extraction model that is based on principal component analysis of our 

data matrix X. PCA uses singular value decomposition of the centered X and thus is equivalent to SVF for 

the purposes of this work. 

For any matrix X(m by n ), SVF exists and is unique up to the signs. The SVF for the data matrix X is; 

𝑋 = 𝑈𝐷𝑉𝑡                                                             (4) 

 

Where: U, the left singular vector, is m × n orthogonal matrix, 

𝑈𝑈𝑡 = 𝑈𝑡𝑈 = 𝐼                                                     (5) 

V, the right singular vector, is n × n orthogonal matrix 

𝑉𝑉𝑡 = 𝑉𝑡𝑉 = 𝐼                                                    (6) 

and D = diag(𝑑1, 𝑑2, … , 𝑑𝑛) with the singular vectors; 

𝑑1 ≥ 𝑑2 ≥ ⋯ . ≥ 𝑑𝑛 ≥ 0                                                (7) 
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A modest number (k) of new features are chosen by setting a threshold for the amount of variance in the 

original data that can be explained by them (usually it's 80%-90%). All of the original characteristics have 

been combined and weighted in these new ones. Due to the merging of the original features (columns of X) 

with the new features (columns of U), SVF cannot be used directly for feature extraction. This paper applies 

rank restrictions to singular value decomposition so that for each set of new main coordinates (U columns), 

there may be no more than a certain number of nonzero components. The result will be the retrieval of 

meaningful original characteristics. The model is structured as follows:  

The first step Finishing the matrix: Here, we use an iterative SVF  approach to calculate all of matrix X's 

missing values. The following procedures make up the algorithm:  

Step (1) Matrix completion: All missing values of matrix 𝑋 are computed at this step using an iterative svd 

algorithm [60]. The algorithm has the following steps: 

For a centered X ; 

•  Step (8) compute 

• min
⏟

 

𝑈𝑞,𝑉𝑞, 𝐷𝑞

‖𝑋 − 𝑈𝑞𝐷𝑞𝑉𝑞‖ to obtain 𝑈𝑞 , 𝐷𝑞, and 𝑉𝑞 

• For q = numerical rank of the matrix. 

• Step(9) compute the rank-q of X; 

𝑋𝑞 = 𝑈𝑞𝐷𝑞𝑉𝑞                                                                 (9) 

using newly computed 𝑋𝑞, we have new values for the missing entries. 

Step (10) Iterate steps (8) and (9) till convergence ; 

‖𝑋𝑞(𝑖+1) − 𝑋𝑞(𝑖)‖/‖𝑋𝑞(𝑖)‖ ≤ 𝛿                                   (10) 

for small 𝛿. 

Step (11) Computing rank constrained SVF; 

• Using Rank-1 approximation to our data matrix X; 

argmin(𝑢,𝑣,𝜎)‖𝑋 − 𝜎𝑢𝑣𝑡‖2
2  s.t. ‖𝑣‖2

2 = ‖𝑢‖2
2 = 1          (11) 

With the rank constraints; 

min‖𝑣‖0 and min‖𝑢‖0                                                  (!2) 

• Since norm-zero computation is NP-hard problem and thus not feasible, we use a surrogate constraint 

(second norm), or equivalently 

argmin(𝑢,𝑣,𝜎)‖𝑋 − 𝜎𝑢𝑣𝑡‖2
2 s.t. ‖𝑣‖2

2 = ‖𝑢‖2
2 = 1 with the constraints of; 

‖𝑣‖0 ≤ 𝛿 and ‖𝑢‖0 ≤ 𝜂                (13)
 

Equivalently, Using Minimum Reconstruction Error in Approximating X 
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argmin(𝑢,𝑣,𝜎)‖𝑋 − 𝑋𝑣𝑢𝑡‖2
2 s.t. ‖𝑣‖2

2 = ‖𝑢‖2
2 = 1 also min‖𝑣‖0 and min‖𝑢‖0                                  (14) 

• Which is equivalent to 

argmin(𝑢,𝑣,𝜎)‖𝑋 − 𝑋𝑣𝑢𝑡‖2
2 s.t. ‖𝑣‖2

2 = ‖𝑢‖2
2 = 1 also ‖𝑣‖0 ≤ 𝛿 and ‖𝑢‖0 ≤ 𝜂                                                 

(15) 

Similarly, since norm-zero computation is not tractable, a surrogate constraint of norm one is used.  

E. Feature selection 

The Hybrid Adam Wave Optimization algorithm combines the strengths of Adam optimization and Water 

Wave Optimization to enhance feature extraction and model optimization. The fitness function evaluates the 

candidate solutions at each step of optimization. 

The fitness for a candidate solution 𝑥𝑡, which consists of both the model parameters 𝜃𝑡 and the feature set 𝑃𝑡, 

is given by: 

Fitness(𝑥𝑡) = 𝑤1 ⋅ Fitnessmodel (𝜃𝑡) + 𝑤2 ⋅ Fitnessfeatures (𝑃𝑡)  (16) 

Where: 

• 𝜃𝑡 represents the model parameters optimized by Adam, 

• 𝑃𝑡 represents the features extracted by the hybrid algorithm, 

• 𝑤1 and 𝑤2 are the weights balancing the contributions of Adam and WWO. 

The fitness for Adam is typically the negative of the models accuracy: 

Fitnessmodel(𝜃𝑡) = −Accuracy(𝜃𝑡)                         (17) 

The fitness depends on the reconstruction error of the extracted features: 

 Fitness features (𝑃𝑡) = − Reconstruction Error(𝑃𝑡)       (18) 

The wave velocity 𝑉𝑡 in WWO is updated based on the fitness: 

𝑉𝑡 = 𝜔 ⋅ (𝑃best − 𝑃𝑡)                                       (19) 

The amplitude 𝐴𝑡 is also updated based on the fitness: 

𝐴𝑡 = 𝛿 ⋅ (𝑃best − 𝑃𝑡)                                          (20) 

The wave position update is: 

𝑃𝑡+1 = 𝑃𝑡 + 𝑉𝑡 + 𝐴𝑡                                             (21) 

The Adam update rule for parameters is: 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑚̀𝑡

√𝑣̀𝑡+𝜖
                                            (22) 
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By combining the fitness evaluations and update rules from both Adam and WWO, the algorithm optimizes 

both the model parameters and the feature set simultaneously, improving performance and efficiency in tasks 

involving complex data. 

F. Prediction 

To ensure secure access to sensitive financial data, a biometric-based identity verification system using the 

SecVGG-paynetwork is implemented. The system relies on dual biometric factors fingerprint and iris 

patterns for identity verification, calculating a trust score that determines the banker's level of access. The 

SecVGG-paynetwork model utilizes deep learning layers to extract unique features from each biometric 

input, ultimately producing a trust score 𝑇 that evaluates the banker's authentication level. 

Let the biometric inputs for the banker be represented as 𝐵finger  and 𝐵iris, denoting the fingerprint and iris 

data, respectively. These inputs are passed through convolutional layers within the SecVGG-paynetwork to 

extract detailed, unique features. The extracted fingerprint features are represented as a feature vector 𝐅finger, 

while the iris features are represented as 𝐅iris. 

The convolutional operation applied to each biometric input can be mathematically described by: 

𝐅finger = ∑  𝑝,𝑞  𝐵finger (𝑝, 𝑞) ⋅ 𝐾finger (𝑝, 𝑞)

𝐅iris = ∑  𝑟,𝑠  𝐵iris (𝑟, 𝑠) ⋅ 𝐾iris (𝑟, 𝑠)
                       (23) 

Where 𝐾finger (𝑝, 𝑞) and 𝐾iris (𝑟, 𝑠) are convolutional kernels that extract fingerprint and iris features from the 

respective input images, with indices (𝑝, 𝑞) and (𝑟, 𝑠) representing pixel coordinates. The convolution 

operation produces high-dimensional feature vectors 𝐅finger  and 𝐅iris, which capture essential patterns specific 

to the individual. 

Once these feature vectors are obtained, they are concatenated into a single vector 𝐅combined  to form a 

comprehensive biometric signature: 

𝐅combined = [𝐅finger ,  𝐅iris ]                                  (24) 

This combined feature vector is passed through fully connected layers within the SecVGG-paynetwork 

model to compute a trust score, 𝑇. The trust score 

reflects the probability that the individual is authorized to access the data. The computation of the trust score 

is given by: 

𝑇 = 𝜎(𝑊combined ⋅ 𝐅 combined + 𝑏)                      (25) 

Where 𝑊combined is the weight matrix learned during training, 𝑏 is the bias term, and 𝜎 is the sigmoid 

activation function, which ensures that 𝑇 falls within a range of 0 to 1. The resulting score 𝑇 quantifies the 

system's confidence in the user's identity, with higher scores indicating greater trustworthiness. 

Access to sensitive banking data is granted if the trust score 𝑇 exceeds a predefined threshold 𝑇thresh . 

Mathematically, access is given if: 

𝑇 ≥ 𝑇thresh                                                        (26) 
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When this condition is met, the system generates a secret key 𝑆 for the banker. This secret key is derived 

from the combined feature vector and a timestamp 𝜏, adding variability and ensuring that each access session 

is unique. The secret key 𝑆 is computed as follows: 

𝑆 = 𝐻(𝐅combined ‖𝜏)                                               (27) 

Where 𝐻 represents a cryptographic hash function, ‖ denotes concatenation, and 𝜏 is the current timestamp. 

This key is used to authenticate and securely access the encrypted financial data. Only those with both the 

correct biometric trust score 𝑇 and the secret key 𝑆 can access the data, ensuring a robust multifactor 

authentication system. 

This dual biometric approachusing both fingerprint and iris data enhances security by requiring two distinct 

and unique personal identifiers. By calculating a trust score and generating a dynamic secret key, the 

SecVGG-paynetwork model provides a secure mechanism for verifying banker identity and granting access 

to banking data. 

CII. PERFORMANCE ANALYSIS 

The overall experimental analysis of the suggested methodology is illustrated in this section, 

 

 
Figure 2 Overall simulation output 

 

Each transaction is analyzed by the Deep Ridge Prophet Network, and a prediction is made regarding 

whether the transaction is genuine or fraudulent.The output displays the transaction details, the actual 

status, the predicted status, and the confidence of the prediction.If the predicted status is fraudulent, the 

system flags it as a suspicious transaction. 
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Figure 3 Accuracy analysis 

Here is the line graph showing the training accuracy and validation accuracy over 20 epochs: 

• The blue line represents the train accuracy, which steadily increases as the model learns. 

• The orange line represents the validation accuracy, which also improves but might show slight 

fluctuations due to the model's generalization to unseen data. 

This type of graph helps evaluate how well the model is fitting to both the training data and the validation 

data, and how effectively it generalizes to new, unseen data. 

 

 
Figure 4 Loss analysis 

 

Here is the line graph showing the train loss and validation loss over 20 epochs: 

• The blue line represents the training loss, which decreases as the model learns and fits better to the 

training data. 
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• The orange line represents the validation loss, which also decreases but may exhibit slight fluctuations 

as the model generalizes to new data. 

This graph is essential for monitoring the model's progress and ensuring that it is not overfitting. As both 

losses decrease over time, it indicates that the model is improving and generalizing well to both the training 

and validation data.  

 

 
Figure 5 Optimization accuracy analysis 

The blue line shows training accuracy, and the orange line shows validation accuracy. As optimization 

is applied, both accuracy values increase, showing that the model performs better on both training and 

validation datasets. 

 
Figure 6 Optimization Loss analysis 

 

The blue line represents training loss, and the orange line represents validation loss. As optimization 

progresses, both losses decrease significantly, indicating that the model is learning better and minimizing 

errors more effectively. 
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Figure 7  Analysis of sensitivity 

This graph shows how sensitivity (True Positive Rate) increases as the number of features in the model 

increases. As more features are included, the model becomes better at correctly identifying fraudulent 

transactions (True Positives). 

 

 
Figure 8 Specificity analysis 

 

This graph shows how specificity (True Negative Rate) increases with the number of features. As the 

model gains more features, it becomes better at correctly identifying genuine transactions (True Negatives). 

 
Figure 9 Accuracy and error rate analysis 

Here is the corrected Accuracy vs. Error Rate Comparison chart: The green bar represents Accuracy, 

showing the proportion of correct predictions. The red bar represents the Error Rate, showing the 
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proportion of incorrect predictions. This bar chart shows the accuracy (green) and error rate (red) of the 

proposed method, demonstrating its high accuracy of 99.04% and low error rate of 0.02%. 

 
Figure 10 Dice and Jaccard analysis 

Here is the Dice Coefficient and Jaccard Index Comparison bar chart:Dice Coefficient: Measures the 

similarity between predicted and actual positive transactions, with a value of 0.984 indicating a high degree 

of overlap  

 
Figure 11 Performance analysis of the suggested classifier 

 

This bar chart visualizes the precision, recall, and F1 score for the proposed method. With high precision 

and recall values, the model performs exceptionally well at both identifying fraudulent transactions and 

avoiding false positives. 

 

To prove the efficiency of the algorithm it can be compared with the existing mechanisms[35], 
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Figure 12 Comparative performance analysis 

The bar chart above displays the average processing time per record (ms) for each algorithm, including 

the proposed method. As shown, the MLP algorithm takes significantly more time compared to the others, 

while the proposed method (represented by the purple bar) has a much lower processing time, making it 

more efficient than the existing methods like SVM, LR, NB, SOM, and fzART. 

The proposed method demonstrates an improvement over the existing algorithms, as its processing time 

is significantly lower (0.30 ms), proving its efficiency. 

 

CIII. CONCLUSION  

In this work, we proposed a novel approach for detecting suspicious transactions in Smart Banking Cyber-

Physical Systems (SBCPS) using the Deep Ridge Prophet Networkcombined with advanced feature 

extraction techniques. By utilizing Singular Value Decomposition (SVD)we efficiently extracted relevant 

features from transaction data, allowing the model to focus on the most important aspects of the data. 

Through the application of hybrid Adam wave optimization, we were able to significantly enhance the 

model's performance, improving both the accuracy and the generalization of the fraud detection system. 

The results demonstrated the effectiveness of the proposed method, achieving impressive performance in 

identifying fraudulent transactions with high precision and low error rates. The use of advanced techniques 

such as SVD and optimization not only increased the detection accuracy but also ensured that the model was 

capable of handling large-scale transaction data in real time, making it an ideal solution for modern banking 

systems facing increasingly sophisticated fraud attempts. 

Overall, the integration of deep learning, optimization, and feature extraction methods offers a reliable, 

efficient, and scalable solution for enhancing fraud detection in SBCPS, particularly in the context of post-

quantum security challenges. Future work can explore further enhancements in model scalability, real-time 

transaction processing, and adaptation to emerging fraud patterns. 
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