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Abstract
Recently some Quantum Information Theoretic measures like Entanglement and Quantum Discord have
emerged as very important  tools for  investigating quantum systems. A number of  such measures in a
critical  Heisenberg  spin  system  (which  undergoes  a  transition  from  a  disordered  phase  to  an
antiferromagnetically ordered phase) have been studied in this work and some non-trivial features exhibited
by  the  measures  near  Quantum Critical  Points  have  been  obtained.  The  nature  of  variation  of  those
measures with a disorder-enhancing next-nearest-neighbor interaction of the model system has also been
investigated. The work indicates that the Quantum discord is more robust than the so-called non-local
correlations  against  some  disordering  interactions  present  in  the  system  and  also  more  consistent  in
signaling the changes brought about in the physical state by tuning the relevant parameters of the system
across a Quantum Phase Transition. A novel universal scaling behavior exhibited by the measures has also
been found.
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Introduction
Quantum  Entanglement,  not  only  is  considered  as  a  resource  of  quantum  computation,  quantum
cryptography and quantum information processing, but also has proved to be efficient in analyzing the
behaviour of various condensed matter systems [Horodecki et al., 2009; Amico et al., 2008]. A familiar

example of an entangled state is the singlet state of two spin-
2

1
 particles,  

2

1
, which cannot

be written as a product of the spin states of individual spins. In the case of a mixed state, entanglement
occurs if the density matrix is not a convex sum of product states. However, it has been established that
entanglement does not encompass all kind of substantive correlations of quantum nature present in quantum
systems. Quantum discord (QD) [Hendenson et al., 2001; Ollivier et al., 2002], defined as the discrepancy
between quantum versions  of  two classically  equivalent  expressions  for  mutual  information,  has  been
demonstrated to be a  novel  resource for  quantum computation [Datta  et  al.,  2008;  Knill  et  al.,  1998].
Following the seminal work, people have recently proposed several new measures of quantum correlations
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and non-locality that are more general than entanglement [Modi et al., 2012]. It has been experimentally
demonstrated using photonic quantum systems that separable states with non-zero quantum discord can
outperform entangled states in quantum information protocols like quantum remote state preparation [Dakić
et al., 2012].

Quantum phase transitions (QPT) are sharp changes occurring in the ground states of quantum many-body
systems when one or more of the physical parameters of the system are continuously tuned at absolute zero
temperature [S. Sachdev, 2011]. These radical changes, which strongly affect the macroscopic properties of
the  system,  are  manifestations  of  quantum  fluctuations.  Despite  the  fact  that  reaching  absolute  zero
temperature is practically impossible, QPTs might still be observed at sufficiently low temperatures, where
thermal fluctuations are not significant enough to excite the system from its ground state. In recent years,
the methods of quantum information theory (QIT) have been widely applied to quantum critical systems. In
particular,  entanglement and quantum discord have been shown to identify the quantum critical  points
(QCP) with success in several different critical spin chains, both at zero and finite temperature [Osborne et
al., 2002 and references therein].

In this work, we investigate the pair-wise quantum correlations in a one-dimensional spin-1/2 Heisenberg
chain with anisotropic nearest neighbour (NN) and next nearest neighbour (NNN) interactions depicted in
[Datta et al., 2005]. The Hamiltonian of the anisotropic Heisenberg spin chain is given by
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where  J1 and  JZ are  exchange  coupling  strengths  along  the  transverse  and  the  longitudinal  directions
respectively,  J2 is  the  NNN  coupling  and  the  coefficient  of  the  last  term  represents  coupling  to  a
longitudinal  magnetic  field.  This Hamiltonian has  been obtained by an exact  mapping of  an effective
polaronic interaction Hamiltonian, exact to second order in perturbation, for the spin-less one-dimensional
Holstein model to the one written above. The system with J2 = 0, i.e., without NNN interaction, has been
shown  to  undergo  a  disordered  (Luttinger  liquid  in  the  original  spin-less  Polaronic  system)  to
antiferromagnetically ordered phase (Charge Density Wave phase in the Polaronic system) transition at

zero magnetization ( 
j

z
j 0 ) at  JZ = 2J1 and at non-zero magnetization is always disordered [F.D.M.

Haldane, 1980]. The asymptotic behaviour of the static spin-spin correlation function for a chain of length

N is  given  by  
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  where  A  is  an  unknown constant  and  n is  the  spin

correlation exponent.  1 < n ≤ 2 in the disordered (LL) phase,  n = 1 is the transition point to the ordered
(CDW)  state  and  n  =  0 depicts  complete  antiferromagnetic  order.  Interestingly,  the  NNN  exchange
interaction term with coupling strength J2, being in the transverse direction, does not compete to produce
frustration. But on including a non-zero J2, the disordering effect increases and the LL to CDW transition
takes place at higher values of  JZ. Including  J2 evidently does not change the universality class with the
central charge c = 1. It is not an integrable model due to the presence of the NNN term and thus cannot be
solved by coordinate Bethe Ansatz. Hence we used a modified Lanczos technique to analyze the properties
of the effective Hamiltonian numerically [Datta et al., 2005; Gagliano et al., 1987] I have taken J1 = 1 so
that the QPT takes place at JZ = 2 for zero J2.
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As a measure of genuine quantum correlations, we use concurrence [Hill et al., 1997], and a very recently
proposed Observable Measure of Quantum Discord (OMQD) [Girolami et al., 2012], which is a simplified
version of the geometric measure of quantum discord [Dakić et al., 2010]. A knowledge of the two-site
reduced density matrix ρ(i, j), obtained from the full density matrix by tracing out the spins other than the
ones at sites i and j, enables one to calculate concurrence, a measure of entanglement between two spins at
sites i and j [Hill et al., 1997]. Let ρ(i, j) be defined as a matrix in the standard basis. One can define the

spin-reversed density matrix as    yyyy   ~ , where σy is the Pauli matrix. The concurrence is

given by C = Max{λ1 – λ2 – λ3 – λ4, 0}  where λi’s are square roots of the eigenvalues of the matrix ~ in

descending order. An equivalent way of writing C is       }0,4,41,1|2,3{|   MaxC . C = 0 implies

an unentangled state whereas C = 1 corresponds to maximum entanglement. 

Geometric measure of quantum discord has been introduced to overcome the difficulties in the evaluation
of the original quantum discord which involves a tedious optimization job [Dakić et al., 2010]. It measures
the nearest distance between a given state and the set of zero-discord states. Mathematically, it is given by:

  2
2    ababG MinD (2)

where ρab is the composite state of two spins labeled by a and b and the minimum is taken over the set of
zero-discord classical-quantum states {X}. If we express the state in the Bloch basis
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we obtain the three-dimensional Bloch column vectors x


 and y


associated to a and b and the correlation

matrix t. In a recent work, Girolami et. al. has obtained an interesting analytical formula for the geometric

discord of an arbitrary two-qubit state  DG(ρab) = 2(Tr(S) – Max{ki}) where  tt ttxxS 

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eigenvalues  of  S,  given  by  
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its maximum for  αi = 0 and choosing  θ to be zero, they have obtained a very tight lower bound to the
geometric discord, given by:

      22 262
3

2
STrSTrSTrQ ab  (4)

This quantity (referred as OMQD) can be regarded as a meaningful measure of quantum correlations on its
own and it has the desirable feature that it needs no optimization procedure. Besides being easier to manage
than the original geometric discord, it can be measured by performing seven local projections on up to four
copies of the state. This observable measure has the advantage that it does not require a full tomography of
the system, making it experimentally very accessible. I investigate the variation of C and Q (both for NN
and NNN spin pairs) in the model system with varying longitudinal coupling strength JZ and the disorder-
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enhancing NNN coupling J2 at zero magnetization with a motivation to obtain non-trivial and physically
interesting and important behaviours of usable quantum correlations available naturally in the physical state
of the system.

Comparative behaviour of Different Correlation Measures
Let's first consider the J2 = 0 case. In the Ising limit JZ → ∞, the ground state is exactly the Neel long-range
ordered state with vanishing quantum correlations. When  JZ is decreased and made finite, the quantum
fluctuations start to play a more and more important role inducing NN disorder in the system, then the Neel
state fails to remain an eigenstate of the Hamiltonian. Mathematically, as this fluctuation between two
neighbouring sites enhances the value of off-diagonal terms in their  reduced density matrix  ρ(i,  j),  the
quantum correlations are expected to become larger and larger. At the other extreme limit, i.e., at the “free
particle” limit JZ → 0, the spin-flip term solely rules the system and all spins flip freely on respective sites.
The probabilities of spin up and down at a given site are exactly equal, irrespective of the neighbour spin.

Thus, the state   share the same probability with   or  . This phenomenon makes ρ(1, 1) or ρ(4,

4) relatively large, making C smaller. But once the JZ interaction is turned on, the values of ρ(1, 1) or ρ(4,
4) decrease  effectively  enhancing  the  concurrence.  Hence  the  competition  of  disordering  quantum
fluctuations and ordering interaction must result in a maximum at a certain point. Figure 1 presents the
results regarding the quantum correlations quantified by the NN concurrence C and the NN OMQD Q as a
function of JZ for J2 = 0 for a system size N = 20. We note that both the measure exhibit maxima at the
QCP JZ = 2. The concurrence is greater than the QD for all values of JZ and exhibits a smooth peak at the
QCP. The first derivative, C’ of C with respect to JZ smoothly crosses zero at the QCP (inset of Figure 1).
Unlike C, Q shows an arrowhead-like peak and the first derivative Q’, of Q, shows a finite discontinuity at
the QCP (inset of Figure 1) which conventionally can be considered as a signature of QPT taking place in
the thermodynamic limit (TDL). The results show that, like the pair-wise entanglement, quantum discord
also rise with the ordering interaction (JZ,  in our case) in the disordered phase and fall  with the same
interaction in the antiferromagnetically ordered phase and thus becomes maximum at the transition point.
The mathematical  reason behind such variation  may be  similar  to  the  case  of  C.  Discord  measure  is
essentially a function of the elements of the two-site reduced density matrix and the relative changes in the
values of the diagonal and the off-diagonal elements due to the change in the interaction strengths of the
Hamiltonian results in such variation of Q. The exhibition of a peak by some observable and discontinuity
or diverging tendency of its derivatives at some value of the system parameter for a finite sized system can
be treated as a precursor of the QPT taking place at the TDL. Repeating the investigation for different sizes
of the system, we find similar results (Figure 2 and 3). The value of both the measures depends on the
system size and slightly decreases with it at and away from the QCP. One possible explanation is that as the
size increases, the correlations get shared among more and more number of parties effectively decreasing
the pair-wise part. Figure 4 shows the variation of  Q and  C respectively with varying  N at  JZ = 2. But
interestingly,  the dependence of  both the measures  on system size  becomes flattened as  we make the
system size larger (N > 20). This is totally in conformity with the result shown in [Gu et al., 2003] which
shows that  for  this  system, concurrence exhibits  a  novel  size-independent  scaling with the correlation
length ξ and the measures of quantum correlations calculated for a small system (N ≥ 20) can well describe
the behaviour for very large systems, even the TDL. In the vicinity of the QCP, the concurrence goes like C
= C0 – C1(JZ – JZC)2 (JZC = 2 in this case) for high values of N. The values of the constants C0 and C1 tend to
0.386292 and 0.188 respectively with increasing system size (matches very well with the values calculated
in [Gu et al., 2003] for very large system sizes using Bethe Ansatz. On the other hand, the arrow-head-like
variation of the discord measure goes as  Q = Q0 – Q1|JZ – JZC| (this explains the finite jump of the first
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derivative of Q at the QCP). The value of the constants Q0 and Q1 tends respectively to 0.35 and 0.11 when
we increase the system above  N = 20. The relevant critical exponent of variation is thus 2 (1) for the
concurrence (discord) measure. 

Figure 1: NN QD Q (Dark Circles) and NN Concurrence C (Squares) as a Function of JZ for J2 = 0 at
N = 20

First Derivative of Q (Upper Inset) and C (Lower Inset) as a Function of JZ

Figure 2: Q as a Function of JZ for J2 = 0 for N = 20 (Diamonds), 22 (Squares), and 26 (Circles)
Solid Connecting Lines have been Obtained by Fitting Q = Q0 – Q1|JZ – JZC|

First Derivative of Q (Inset) as a Function of JZ for N = 18 (Dashed) and 26 (Solid Line)
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Figure 3: C as a Function of JZ for J2 = 0 for N = 20 (Diamonds), 22 (Squares), and 26 (Circles)
Solid Connecting Lines have been Obtained by Fitting C = C0 – C1(JZ – JZC)2

First Derivative of C (Inset) as a Function of JZ for N = 18 (Dashed) and 26 (Solid Line)

Figure 4: Variation of C and Q with N at the QCP JZ = 2

Figure 5: Q (Diamonds), QNNN (Circles), C (Triangles) and CNNN (Squares) as Functions of JZ for J2 = 1
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Figure 6: Q (Circles) and C (Squares) as Functions of J2 for JZ = 1 and 0 (Inset)

Figure 7: Q and C (Inset) as Functions of J2 for JZ = 0 (Squares), 1 (Diamonds) 2.5 (Triangles) and 6
(Circles)

Figure 8: Q (Circles), QNNN (Diamonds), C (Squares) and CNNN (Triangles) as Functions of J2 for JZ = 0
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Figure 9: Q (Diamonds), QNNN (Circles), C (Triangles) and CNNN (Squares) as Functions of J2 for JZ = 6

Figure 10: JZC (Circles), JZCr (Squares) and JZQS (Diamonds) as Functions of J2

Having discussed the behaviours of the quantum correlations near the QCP for J2 = 0, let us now explore
the effect of the non-frustrating NNN interaction J2 on the QIT measures and the QCP. Introduction of a
non-zero J2 increases the disordering effects (as NNN pairs start to flip now) and shifts the QCP to a higher
value. We studied the variations of the correlation measures C and Q with J2 and JZ for different system
sizes. Figure 5 demonstrates the variation of C and Q with JZ for J2 = 0 and 1 for N = 20. The peaks of C
and Q shift to JZ ≈ 5.13 for J2 = 1. The measures successfully signal the QPT taking place at a higher value
of JZ. The value of the maxima depends on the system size (decreases with increasing N first significantly
up to N = 20 and then it gets flattened out) and is lowered as we increase J2. Figure 6 depicts the nature of
variation of the measures with increasing J2 for JZ = 1 and 0 (inset) for N = 20. Both C and Q decreases
monotonically with the NNN interaction strength J2 for all JZ < 2. Interestingly, C dominates over Q up to a
certain value of J2 and then goes below it and vanishes as J2 is increased further but Q always remains non-
vanishing and tends to a finite value. We may say that in the disordered phase, the NNN interaction keeps
enhancing  the  disorder,  taking  the  system more  and  more  away  from the  QCP,  and  diminishing  the
quantum correlations in that phase, eventually killing the non-local part. But it cant kill all meaningful
quantum correlations as the discord measure remains non-zero in the quantum separable state at even very
high values of  J2. Crossing of the entanglement and discord measure at a given J2 signals the onset of a
novel  state  where  the  non-local  part  of  quantum  correlations  is  dominated  by  some  other  type  of
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correlations of purely quantum nature measured by the OMQD. If we put JZ > 2, the monotonic nature of
variation of C and Q with J2 changes (Figure 7). Both the measures first increase with J2 up to a value and
then decrease monotonically. The position of the maxima increases with increasing JZ (inset of Figure 6).
For JZ > 2, the system is in a phase with quasi-long range order (depicted by the power law variation of the
spin correlations) when J2  = 0. If we increase J2 in this regime, the correlations first get enhanced due to
increasing J2 as it rapidly takes the system to the order-to-disorder transition point where the correlations
become maximum and then in the disordered phase, it starts to decrease again like the JZ < 2 case. This
result  is  important  due  to  entanglement  and  discord  being  a  resource  in  quantum computation  as  it
demonstrates the fact that disorder may be beneficial at times in certain regions of the tunable parameter
space. The crossing of C and Q happens for JZ > 2 as well and the crossing point shifts to higher J2 values
with increasing JZ.

We now investigate  the  variation  of  NNN concurrence  CNNN and  NNN OMQD  QNNN with  increasing
interaction  strengths.  For  J2  = 0,  CNNN has  been  found  to  be  vanishing  for  all  values  of  JZ and  thus
insensitive to the QPT. With no NNN spin flipping interaction, the non-zero NN spin flipping term J1 and
ordering term JZ make the diagonal elements dominating over the off diagonal elements of the NNN two-
site reduced density matrix making the entanglement between two NNN spins vanishing. However, the
“quantum separable” state of two NNN pair still contains genuine quantum correlations measured by the
QD measure QNNN. QNNN is found to be exactly equal to the NN discord Q in this case. For a non-zero J2, we
get a non-zero  CNNN, but it dies a sudden death for a small value of increasing  JZ (Figure 5). But  QNNN,
though much smaller in  magnitude compared to  Q,  continues to remain non-zero and signal  the QCP
exhibiting  an  arrowhead-type  peak  (and  a  discontinuous  first  order  derivative).  Figure  8  shows  the
simultaneous variations of NN and NNN concurrences and OMQDs with increasing J2 for N = 20 and for
JZ = 0.  QNNN is zero for J2 = 0 and increases with increasing J2 and tends to a constant value at higher J2

values. QNNN, on the other hand, increases with increasing J2, crosses and goes below CNNN at a given J2 and
tends to a constant when J2 is increased further. The variations of the same measures with same system size
for JZ = 6 for have been furnished in Figure 9. Surprisingly, in this case, both Q and QNNN increases initially
with increasing J2, shows peaks at the same value of J2. But unlike Q, QNNN in this case goes down unto a
certain value of the NNN interaction, shows a dip and then again goes up and tends to a constant value.
Near the QCP, unlike entanglement measures, both NN and NNN discord has been found to grow and
exhibit  local  maximum. This  is  an interesting result.  This is  a  hint  of the fact  that  for  some physical
systems, we obtain enhancement of usable quantum correlations between NN as well as distant pairs of
parties near the QCPs. CNNN is vanishing up to a value of J2, suddenly kicks in at that value, increases, goes
above  QNNN and finally saturates. The  Q – QNNN crossing points are identically same with the  C –  CNNN

crossing points. The scaling behaviours exhibited by the measures in the vicinity of the QCP for J2 > 0 are
similar to the behaviours obtained in the J2 = 0 case with exactly same exponents.

We have  observed  that  the  critical  value  JZC  of  the  longitudinal  interaction  strength  JZ,  at  which  the
“disordered-to-ordered” transition occurs, increases with the increasing transverse NNN interaction J2 due
to disordering effects of the later. We plotted JZC with J2 in Figure 10 (Circles). It is a straight line and when
fitted, it goes like JZC ≈ 2.000 + 3.129J2. These values are in fair agreement with the values obtained from
the spin correlation exponent calculations [Dutta et al., 2005]. Thus, as depicted in Figure 10, the straight
line  can  be  considered  as  the  critical  boundary  separating  the  disordered  phase  from  the
antiferromagnetically ordered phase in the JZ – J2 parameter space. We have determined the values of JZQS

at which the NN concurrence vanishes for given J2 values and plotted it in the same figure. It has also been
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found to be a straight line. This line can be considered to be the boundary line separating the region of non-
local correlations from the region of pure discordant quantum separable states of a NN pair. Also, the value
JZCr at which the NN entanglement crosses the NN Quantum discord and goes below it has been observed to
vary linearly with the value of J2 (Figure 11). Going from left to right of Figure 10, i.e., with increasing J2,
we first cross the “ordered-to-disordered” JZC critical line, then in the disordered phase we cross “JZCr line”
where each NN pair of system becomes “more discordant than entangled” and finally we cross the JZQS line
where the NN pairs becomes “Quantum separable” with non-vanishing discord.

Conclusion
This  paper reports  the study of  the quantum correlations quantified by both entanglement  and discord
measures in a one-dimensional anisotropic Heisenberg model which undergoes a continuous QPT from a
disordered (LL) to an antiferromagnetically ordered (CDW) phase at a value of the longitudinal coupling
strength JZ. The system contains a NNN exchange interaction J2 also which is not frustrative but it enhances
disordering quantum fluctuations in the system effectively delaying the transition and shifting it to higher
values  of  the  longitudinal  ordering  interaction  JZ.  The  Heisenberg  spin  model  with  such  competing
interactions has been shown to be realized using atoms in photon coupled cavities [Chen et al., 2010]. I
have quantified the entanglement with the well known measure Concurrence  C and the quantum discord
using a recently proposed observable measure of geometric discord  Q in the ground state of the system
using a modified Lanczos technique of exact Diagonalization and studied the system for increasing finite
sizes. Only the even values of  N have been considered to avoid the frustration effects for odd  N under
periodic boundary conditions. Both the measures Q and C studied here have operational meanings so that
the correlations studied can be made useful and Q have been found to show maxima at the QCP in different
fashions and their first derivatives behave very differently near the QCP. These results demonstrate that
OMQD can be  more relevant  than some conventional  pairwise  entanglement  measures  for  identifying
QCPs in concrete  physical problems. Both the measures have been shown to exhibit  a universal size-
independent scaling behaviour around the critical point for large system sizes. This result conforms well to
the work by Gu et. al. (using Bethe Ansatz technique), where the concurrence has been shown to behave
almost system-independent manner for large system sizes (N > 20). However, the variation of the QD
measure around the QCP demands more complete physical understanding.

The transition  point  has  expectedly  been found to  shift  to  higher  JZ values  (signalled  by  the  OMQD
measure) as we keep on enhancing disordering quantum fluctuations by increasing the transverse NNN
coupling  J2.  Interestingly,  the non-local  measure  C,  starting with values higher than that  of  Q,  decays
sharply with increasing  J2, goes below Q at a given J2, and then vanishes at a higher value of the NNN
coupling. On the other hand, Q remains non-vanishing and tends to a minimum value with increasing J2.
While NNN entanglement CNNN has been found to die sudden death and be fully insensitive to the transition
point, NNN discord QNNN has been found to signal the QCP by exhibiting an arrowhead-type peak, though
feebler than its NN counterpart and a discontinuous first order derivative. While studying the correlations,
we have found regions of the  J2 parameter space, where the concurrence value is vanishing for NN and
NNN pairs, i.e., the system is in quantum separable state but the discord measures are non-vanishing. There
are regions also with discord higher than the non-local correlations. The states in those regions are the
potential candidates to implement QIT protocols which use geometric quantum discord as a resource. Such
crossing of measures of entanglement and discord need further explanations and understanding though. It
would also be interesting to study these measures in the thermodynamic limit where the QPT takes place in
actuality and also at finite temperatures. The work once again shows that genuine quantum correlations can
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be  present  in  a  physical  state  without  the  so-called  non-local  correlations  and we need  more  general
measures of quantum correlations like QD to quantify it and use it a resource. Those correlations are also
more robust compared to the entanglement  against  the disordering quantum fluctuations present  in the
system.  It  also  shows  that  quantum  discord  measures  can  signal  Quantum  phase  transitions  more
successfully  and consistently  than the entanglement  measures  and thus  can shed light  on the areas of
condensed matter physics which are not understood well in terms of conventional observable tools. This
work can be extended to those systems which are yet unexplored.
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