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Abstract 

The classification of aerial imagery is a critical task in various domains, including urban planning, 

agriculture, and disaster management. Recent advancements in deep learning have enabled the 

development of automated systems capable of accurately analyzing aerial images. Aerial imagery 

provides valuable insights into land use, environmental changes, and disaster mitigation strategies. 

This paper explores multi-class classification of aerial images using state-of-the-art deep learning 

models, emphasizing their potential applications and limitations. The study evaluates the 

performance of several pre-trained convolutional neural network (CNN) architectures, including 

ResNet50 [1], MobileNetV2 [2], EfficientNetB0, VGG16 [3], and DenseNet121 [4], on a benchmark 

aerial imagery dataset. DenseNet121 achieved the highest validation accuracy of 96%, outperforming 

other architectures. This paper highlights the importance of model selection, data augmentation, and 

stratified data splitting for effective aerial image classification. The results provide actionable insights 

for researchers and practitioners in adopting robust models for aerial image analysis. 

Keywords: Aerial Image Classification, Deep Learning, Ensemble Models, Magnification-Aware 

Training, ResNet50, DenseNet121, EfficientNet, Land Use Analysis. 

1. Introduction 

Aerial imagery analysis has emerged as a transformative tool in multiple domains, including urban planning, 

precision agriculture, and disaster management. By capturing high-resolution images from above, aerial 

imagery facilitates detailed monitoring of land use, crop health, and infrastructure changes. The increasing 

availability of aerial imagery datasets, combined with advancements in computational resources, has 

propelled the use of automated image analysis systems in various sectors. 

Despite its immense potential, aerial image classification presents unique challenges, including the high 

variability in scale, orientation, and environmental conditions within the images. For instance, 

differentiating between agricultural fields and forested areas often requires sophisticated feature extraction 

techniques due to their visual similarity. Furthermore, the presence of class imbalances in datasets adds to 

the complexity, necessitating robust model training strategies. 

Deep learning, particularly convolutional neural networks (CNNs), has revolutionized image classification 

tasks by enabling the automatic extraction of hierarchical feature representations. CNNs have proven 

effective in capturing intricate spatial features, making them well-suited for aerial imagery analysis. Pre-

trained models, such as ResNet50 [1] and DenseNet121 [4], leverage transfer learning to achieve high 

accuracy even with limited datasets, reducing computational overhead and training time. This study 

evaluates the performance of five CNN architectures for multi-class classification of aerial imagery, aiming 

to identify the most effective model for this challenging task. By benchmarking these architectures on a 
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stratified aerial imagery dataset, the study provides a comprehensive assessment of their strengths and 

limitations. 

Deep learning, particularly convolutional neural networks (CNNs), has emerged as a powerful tool for 

image classification tasks. CNNs excel at learning hierarchical feature representations, enabling them to 

discern subtle differences in image characteristics. Pre-trained models, which leverage transfer learning, 

have significantly improved classification accuracy across domains, reducing the need for extensive 

datasets. This study focuses on evaluating multiple CNN architectures for multi-class classification of aerial 

imagery and identifying the most effective model for this task. By benchmarking these architectures, the 

study aims to provide a comprehensive analysis of their performance on a challenging dataset. 

2. Related Work 

The application of CNNs in image classification has been extensively studied, with significant 

advancements achieved in recent years. He et al. introduced ResNet, which employs residual connections to 

mitigate vanishing gradient issues and enables the training of deeper networks [1]. This architecture has 

been widely adopted for various computer vision tasks due to its robust performance. Similarly, Howard et 

al. developed MobileNet, a lightweight model designed for resource-constrained environments, which uses 

depthwise separable convolutions to achieve efficiency without compromising accuracy [2]. 

Simonyan and Zisserman proposed VGG16, a deep architecture that utilizes a uniform configuration of 

convolutional layers to achieve high accuracy in image classification [3]. The simplicity and effectiveness of 

VGG16 have made it a popular choice in many domains. More recently, Huang et al. introduced DenseNet, 

which features dense connections between layers to promote feature reuse and improve gradient flow [4]. 

This innovative design has demonstrated superior learning efficiency, particularly in complex image 

classification tasks. 

While these architectures have been extensively validated in general-purpose datasets like ImageNet, their 

performance in the context of aerial imagery classification remains underexplored. Prior studies have 

highlighted the importance of transfer learning in adapting pre-trained models to domain-specific datasets, 

but systematic comparisons of these architectures for aerial imagery tasks are limited. This study builds on 

previous research by evaluating the performance of ResNet50, MobileNetV2, EfficientNetB0, VGG16, and 

DenseNet121 on a stratified aerial imagery dataset, with a focus on metrics such as validation accuracy, 

loss, and class-specific performance. 

Despite the proven effectiveness of these models, systematic comparisons in the context of aerial imagery 

classification remain scarce. This study builds upon prior work by evaluating these architectures on a 

stratified aerial imagery dataset, focusing on key metrics such as validation accuracy, loss, and class-specific 

performance. 

3. Datasets 

The dataset used in this study consists of aerial images categorized into 21 classes, such as agricultural land, 

airplanes, buildings, forests, and tennis courts. The images are representative of diverse geographic regions 

and environmental conditions, making the dataset challenging yet suitable for benchmarking. The dataset 

was split into training and validation sets using a stratified approach to ensure balanced class distribution. 

Each image was resized to 256x256 pixels to maintain consistency across models. 
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Data augmentation techniques, including random horizontal and vertical flips, rotations, and zooms, were 

applied to the training set to enhance generalization and prevent overfitting. These augmentations increased 

the effective size of the training dataset while preserving class-specific features. 

 

Figure X: Sample images from the dataset, showcasing diverse classes such as agricultural, harbor, 

runway, and mobile home park. 

4. Methodology 

4.1 Data Preprocessing 

The preprocessing pipeline begins with resizing all images to a uniform resolution of 256x256 pixels. This 

standardization ensures compatibility across different model architectures. Data augmentation techniques, 

including random flips, rotations, zooms, and contrast adjustments, were applied to the training set to 

simulate real-world variations. Pixel values were normalized to the range [0, 1] to facilitate stable training. 

4.2 Model Architectures 

This study evaluates the performance of five prominent CNN architectures. ResNet50, introduced by He et 

al., is known for its residual connections that alleviate vanishing gradient issues, enabling deeper networks 

[1]. MobileNetV2, a lightweight model optimized for resource-constrained environments, achieves 

efficiency through depthwise separable convolutions [2]. EfficientNetB0 employs a compound scaling 

approach to balance network depth, width, and resolution, achieving high accuracy with minimal 

computational cost. VGG16, a classic architecture, employs a stack of convolutional layers with uniform 

kernel sizes, providing strong performance in image classification tasks [3]. DenseNet121, renowned for its 

dense connections, facilitates feature reuse and improves gradient flow, resulting in superior learning 

efficiency [4]. 

Each model was fine-tuned using the pre-trained ImageNet weights. The final fully connected layer was 

replaced with a 21-class softmax layer to match the dataset’s classification requirements. 
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Table 1: Comparison of the key characteristics, strengths, and limitations of the deep learning architectures 

evaluated in this study for multi-class aerial image classification 

4.3 Training 

The training process utilized the Adam optimizer with an initial learning rate of 0.0001. To address class 

imbalance, class weights were computed based on the inverse frequency of each class in the training set. 

Training was conducted for 10 epochs, with early stopping employed to halt training when validation loss 

plateaued. Batch size was set to 32, and mixed precision training was enabled to expedite computations on 

compatible hardware. 

4.4 Evaluation Metrics 

Model performance was assessed using multiple metrics. Overall accuracy was calculated as the ratio of 

correctly classified samples to the total samples. The F1-score, which balances precision and recall, 

provided a more nuanced evaluation of class-specific performance. Confusion matrices were generated to 

visualize classification errors and identify challenging classes. Validation loss was monitored throughout 

training to gauge model generalization. 

Feature DenseNet121 ResNet50 VGG16 MobileNetV2 EfficientNetB0 

Key Feature Dense 

connectivity 

Residual 

connections 

Uniform 

convolutions 

Depthwise 

separable 

Compound 

scaling 

Depth 

(Layers) 

121 50 16 Variable Variable 

Efficiency High Moderate Low High High 

Accuracy Very High Moderate High Moderate High 

Parameter 

Count 

~8M ~25M ~138M ~3.4M ~5.3M 

Primary Use 

Case 

Complex 

datasets 

General-

purpose 

Benchmarking Mobile 

applications 

Balanced 

applications 

Computational 

Cost 

Moderate High Very High Low Low 

Scalability Moderate High Limited High Very High 

Input Size Flexible 

(224x224) 

Flexible 

(224x224) 

Fixed 

(224x224) 

Flexible 

(224x224) 

Flexible 

(224x224) 

Training 

Speed 

Moderate Slow Very Slow Fast Fast 
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Fig 1: Training and validation accuracy and loss curves for all models, showcasing convergence and 

generalization performance. 

 

5. Results and Discussion 

The performance of five deep learning model ResNet50, MobileNetV2, EfficientNetB0, VGG16, 

and DenseNet121—was evaluated using validation accuracy, validation loss, precision, recall, F1-score, 

ROC AUC, and training time. The comparative results are summarized in table below.DenseNet121 

emerged as the top performer with the highest validation accuracy (96.67%), the best F1-score (0.9663), and 

a near-perfect ROC AUC score (0.9995). The table highlights the relative strengths of each architecture, 

including computational efficiency, as evidenced by MobileNetV2's fast training time of 374.23 seconds, 

compared to DenseNet121's longer training time of 1538.65 seconds. 

Model Validation 

Accuracy 

Validation 

Loss 

Precision Recall F1-

Score 

ROC 

AUC 

Training 

Time (s) 

ResNet50 0.8429 3.2244 0.9012 0.8429 0.8375 0.9748 942.72 

MobileNetV2 0.6976 3.8519 0.763 0.6976 0.6638 0.9751 374.23 

EfficientNetB0 0.2976 5.0575 0.5177 0.2976 0.2896 0.8157 637.08 

VGG16 0.8786 2.0149 0.8951 0.8786 0.8805 0.991 875.63 

DenseNet121 0.9667 1.8039 0.9693 0.9667 0.9663 0.9995 1538.65 

Table 2: Comparative results of evaluated models, including validation accuracy, loss, precision, recall, 

F1-score, ROC AUC, and training time. 

To provide a deeper analysis of the classification performance, the classification reports for each model are 

visualized in a bar chart. This visualization captures the precision, recall, and F1-scores across all classes, 

offering insights into the specific areas where models excel or struggle. DenseNet121’s consistently high 

metrics across all classes affirm its robustness for aerial image classification tasks. 
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Fig2: Comparative bar chart of classification report metrics (Precision, Recall, F1-Score) for all models. 

In addition, a heatmap visualizationof the confusion matrix for DenseNet121 highlights its performance in 

correctly classifying challenging classes such as "agricultural," "tenniscourt," and "airplane." The near-

diagonal pattern of the matrix underscores its precision across all classes, with minimal misclassifications. 

 
Fig 3: Confusion matrix heatmap for DenseNet121 showcasing per-class classification performance. 

6. Conclusion 

This study demonstrates that DenseNet121 outperforms other CNN architectures for multi-class 

classification of aerial imagery. Its dense connections facilitate superior feature extraction, making it the 

most effective model for this task. VGG16 also shows strong performance, while MobileNetV2 offers a 

lightweight alternative suitable for resource-constrained applications. The results underscore the importance 

https://www.ijirmps.org/


Volume 10 Issue 6                                        @ November - December 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2206232098          Website: www.ijirmps.org Email: editor@ijirmps.org 7 
 

of model selection, data preprocessing, and training strategies in achieving high accuracy for aerial image 

classification. 

Future work will explore ensemble methods to combine the strengths of multiple models and improve 

overall accuracy. Additionally, interpretability techniques, such as Grad-CAM, will be employed to provide 

insights into the models’ decision-making processes. Evaluations on larger and more diverse datasets will 

also be conducted to validate the models’ generalization capabilities. 
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