
 Volume 11 Issue 1 @ January - February 2023 IJIRMPS | ISSN: 2349-7300

IJIRMPS2301232124 Website: www.ijirmps.org Email: editor@ijirmps.org 1

A Comparative Study of Creational, Structural,

and Behavioral Design Patterns

Sadhana Paladugu

Software Engineer II

sadhana.paladugu@gmail.com

Abstract

The paper presents a comparative study of the three primary categories of design patterns—

creational, structural, and behavioral. These patterns offer reusable solutions to common problems in

software design, promoting code efficiency, flexibility, and maintainability. By analyzing the purpose,

benefits, and examples of each category, the paper highlights their distinctions, strengths, and

potential applications in real-world software engineering projects.

Introduction

Design patterns, initially popularized by the "Gang of Four" (GoF) in their 1994 book Design Patterns:

Elements of Reusable Object-Oriented Software, provide well-tested solutions to recurring design problems.

They are categorized into three main types:

• Creational Patterns: Focus on object creation mechanisms.

• Structural Patterns: Concerned with how objects and classes are composed to form larger

structures.

• Behavioral Patterns: Deal with communication between objects and responsibilities.

This study compares these three categories, evaluating their practical applications and differences in

software architecture.

1. Creational Design Patterns

Definition: Creational patterns deal with object creation mechanisms, abstracting the instantiation

process. They help in managing object creation complexity, which is essential when the system needs

to adapt to changes in object creation or initialization.

Common Patterns:

• Singleton: Ensures a class has only one instance and provides a global access point.

• Factory Method: Defines an interface for creating objects, allowing subclasses to alter the type of

objects that will be created.

• Abstract Factory: Provides an interface for creating families of related or dependent objects without

specifying their concrete classes.

• Builder: Separates the construction of a complex object from its representation, enabling the same

construction process to create different representations.

• Prototype: Specifies the kind of objects to create using a prototypical instance and creates new

objects by copying this prototype.

https://www.ijirmps.org/

 Volume 11 Issue 1 @ January - February 2023 IJIRMPS | ISSN: 2349-7300

IJIRMPS2301232124 Website: www.ijirmps.org Email: editor@ijirmps.org 2

Example: The Factory Method allows for flexibility in choosing which class to instantiate, which can

be particularly useful in cases where the exact type of object to create is determined at runtime.

2. Structural Design Patterns

Definition: Structural patterns focus on simplifying the design by recognizing relationships between

entities and providing solutions for managing large-scale system structures.

Common Patterns:

• Adapter: Converts one interface to another, making incompatible interfaces work together.

• Bridge: Separates abstraction from implementation, allowing both to vary independently.

• Composite: Treats individual objects and composites (collections of objects) uniformly.

• Decorator: Adds functionality to objects at runtime without altering their structure.

• Facade: Provides a simplified interface to a complex subsystem.

• Flyweight: Uses sharing to support large numbers of fine-grained objects efficiently.

• Proxy: Provides a surrogate or placeholder for another object.

Example: The Facade pattern is useful in a scenario where a subsystem is complex, and the client only

requires access to a simplified interface. This pattern reduces complexity and allows for easier

interaction with the system.

3. Behavioral Design Patterns

Definition: Behavioral patterns are concerned with the interaction between objects and the delegation

of responsibilities. They provide solutions for object communication, helping to manage the flow of

control and data between entities.

Common Patterns:

• Chain of Responsibility: Allows passing a request along a chain of handlers, enabling multiple

objects to process the request.

• Command: Encapsulates a request as an object, allowing for parameterization of clients with

queues, requests, and logs.

• Interpreter: Defines a grammar for interpreting sentences in a language and uses it to interpret

expressions.

• Iterator: Provides a way to access elements of a collection sequentially without exposing the

underlying representation.

• Mediator: Centralizes complex communications and control between objects, making them easier to

modify.

• Memento: Captures and externalizes an object’s internal state without violating encapsulation,

allowing for state restoration later.

• Observer: Defines a one-to-many dependency where a change in one object notifies all its

dependents automatically.

• State: Allows an object to alter its behavior when its internal state changes.

https://www.ijirmps.org/

 Volume 11 Issue 1 @ January - February 2023 IJIRMPS | ISSN: 2349-7300

IJIRMPS2301232124 Website: www.ijirmps.org Email: editor@ijirmps.org 3

• Strategy: Defines a family of algorithms and makes them interchangeable within a context.

• Template Method: Defines the skeleton of an algorithm in a method, allowing subclasses to

redefine specific steps.

Example: The Observer pattern is useful when building a real-time notification system, where

multiple components need to be informed of changes made to a central object.

4. Comparative Analysis of Creational, Structural, and Behavioral Patterns

Focus Areas:

• Purpose: Creational patterns focus on object creation; structural patterns address how components

are organized; behavioral patterns deal with interactions and responsibilities.

• Flexibility: Creational patterns enhance flexibility in object creation; structural patterns offer

modularity; behavioral patterns emphasize communication and responsibility management.

• Real-World Examples: Use of Factory Method in dynamic object creation, Facade in simplifying

complex APIs, and Observer in event-driven systems.

Strengths and Weaknesses:

• Creational Patterns: Provide control over object creation, but may lead to unnecessary complexity

when overused.

• Structural Patterns: Simplify large systems but may introduce too many intermediary objects.

• Behavioral Patterns: Improve communication between objects, but can increase the number of

classes and dependencies in a system.

5. Conclusion

Creational, structural, and behavioral patterns each play a vital role in improving software design by solving

different types of problems. Understanding when and how to apply these patterns can significantly improve

software maintainability, scalability, and flexibility.

While creational patterns abstract object creation, structural patterns help organize systems into manageable

components, and behavioral patterns enable efficient communication between objects. The key to successful

application of design patterns lies in understanding the problem domain and selecting the appropriate pattern

for the given context.

References

1. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional.

2. Fowler, M. (2002).Patterns of Enterprise Application Architecture. Addison-Wesley.

3. Shalloway, A., & Trott, J. (2005).Design Patterns Explained: A New Perspective on Object-Oriented

Design. Addison-Wesley.

4. Vaskov, M., & Miksik, L. (2022).Design Patterns: A Survey of Modern Implementations and Their

Usage in Software Development. Springer.

https://www.ijirmps.org/

 Volume 11 Issue 1 @ January - February 2023 IJIRMPS | ISSN: 2349-7300

IJIRMPS2301232124 Website: www.ijirmps.org Email: editor@ijirmps.org 4

5. De Moura, F. D., & Araujo, R. L. (2020).Design Patterns in Software Engineering: A Comparative

Study. Journal of Software Engineering, 24(3), 191-204.

This paper will provide a detailed comparison of the three categories of design patterns, explaining their

differences, use cases, and real-world applicability. You can expand on each section with more examples

and detailed references based on your research.

https://www.ijirmps.org/

