
Volume 11 Issue 5                                          @ September - October 2023 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2305232270          Website: www.ijirmps.org Email: editor@ijirmps.org 1 

 

Feature-Aware Confident Learning to Improve 

Cloud Revenue Conversion: Leveraging Feature 

Dependencies for Label Noise Correction 

Pavan Mullapudi 
 

Pavannithin123@gmail.com 

Senior Data Scientist 

Amazon Web Services 

Seattle, WA 

 

Abstract 

Label noise is a prevalent challenge in supervised learning, often degrad- ing model performance. 

Existing approaches, such as confident learning[4], assume label noise is independent of input 

features, which can limit their effectiveness in real-world datasets where noise correlates with 

features. In this paper, we propose Feature-Aware Confident Learning (FACLe), a novel method that 

models label noise as a function of input features. By dynam- ically estimating a noise transition 

matrix conditioned on features, FACLe enables the correction of feature-dependent label noise. The 

method inte- grates unsupervised clustering methods and confident learning to identify noisy samples 

to learn the feature-conditioned noise patterns. We apply this technique on a sample dataset in the 

domain of cloud computing. Our experiments demonstrate that FACLe achieves substantial 

improvements over baseline methods, with an average precision improvement of 15% , equating to an 

improvement of 10% in revenue conversion. 

 

Keywords: Supervised Learning, Label Noise, Machine Learning, Revenue Management, Cloud 

Computing 

1 Introduction 

In highly competitive markets, predicting the likelihood of an opportunity launching and generating revenue 

is a critical challenge for enterprise organizations. The ability to forecast the revenue conversion of 

opportunities is pivotal not only for optimizing resource allocation of but also for driving long-term revenue 

growth. Many organizations have predictive models that are built on training data collected over the years. 

However, this task is fraught with complexities arising from the inherent noise in the data, which hampers 

the accuracy of predictive models. One major source of noise stems from the evaluation process conducted 

by sales teams. Sellers, driven by optimism or a lack of stringent criteria, often misclassify opportunities as 

having launched when they may lack the necessary alignment with customer needs or market conditions. 

This subjective bias introduces significant variability in the labels used for training predictive models. 

Compounding this issue is the challenge of accurately tracking the revenue generated by launched 

opportunities. Revenue attribution often conflates the organic growth of existing customers with incremental 

revenue driven by new opportunities. This ambiguity in label assignment leads to noisy ground truth data, 

which contributes to the degradation of performance in the models. 

The problem of label noise is pervasive in supervised learning, and traditional approaches often assume that 

noise is independent of input features. For instance, confident learning [4] and noise-tolerant loss functions 
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[5] have demonstrated effectiveness in identifying and correcting noisy labels under certain conditions. 

However, these methods typically rely on assumptions such as noise uniformity across the dataset or feature-

label independence. In real-world datasets, particularly in the domain of revenue forecasting, noise is 

frequently feature-dependent. For example, opportunities tied to specific industries or customer segments 

may exhibit unique patterns of mislabeling, influenced by factors such as sales team expertise or historical 

biases in customer behavior. These nuances are overlooked by existing approaches, limiting their 

applicability to datasets with complex noise structures. To address these challenges, we propose Feature-

Aware Confident Learning (FACLe), a novel method that models label noise as a function of input 

features. FACLe builds upon the foundational ideas of confident learning by incorporating a feature-

dependent noise transition matrix through clustering. This matrix dynamically adjusts noise correction based 

on input features, enabling the identification and correction of noisy labels in a more targeted manner. By 

explicitly leveraging feature-label relationships, FACLe offers a robust framework for handling noise in 

complex datasets. Our contributions are threefold: 

1. A Feature-Aware Noise Correction Framework: We introduce a method that extends traditional 

confident learning by modeling label noise as a function of input features through clustering. This 

framework employs unsupervised learning method of clustering to estimate a dynamic noise 

transition matrix for each cluster, capturing the dependencies between features and label noise. 

Unlike previous approaches, FACLe explicitly accounts for feature-conditioned noise patterns, 

making it particularly suited for real-world datasets. 

2.  Improved Revenue Conversion through Noise Correction: We demonstrate that addressing label 

noise significantly enhances predictive accuracy for a existing opportunity conversion propensity 

model. Our experiments show that correcting feature-dependent label noise reduces misclassification 

and results in a 15% increase in average precision and 10% increase in revenue conversion on 

average. 

Despite advances in noise-robust learning, significant gaps remain in handling feature-dependent noise in 

domain-specific datasets. Recent work in the health- care domain [1] and natural language processing [3] has 

highlighted the importance of addressing context-dependent noise. However, these methods often rely on 

domain-specific heuristics or lack generalizability. FACLe bridges this gap by providing a generalizable 

approach to noise correction that is tailored to feature- dependent scenarios. In summary, our work addresses 

a critical challenge inCloud Revenue forecasting by developing a noise-aware framework that directly 

tackles the nuances of feature-dependent label noise. By improving the accuracy of opportunity predictions, 

FACLe not only advances the state-of-the-art in noise-robust learning but also delivers tangible business 

value to Cloud. The remainder of this paper is organized as follows: Section2reviews related work on label 

noise correction. Section 3describes the FACLe methodology in detail. Section4presents results and we 

conclude with future directions in 5 

2 Related Work 

Handling label noise in supervised learning has been a persistent challenge, with diverse approaches 

proposed to mitigate its impact. Broadly, these methods can be categorized into noise-robust models, noise 

detection and correction frameworks, and domain-specific applications. 

 

2.1 Noise-Robust Models 

Noise-robust learning methods aim to minimize the effect of noisy labels during training. Loss correction 

techniques, such as those by [5], correct the loss function by estimating a noise transition matrix. This 

approach assumes that label noise is independent of input features, limiting its applicability in cases where 
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noise depends on the feature space. Another prominent line of work involves robust loss functions like mean 

absolute error (MAE) and its extensions [2], which reduce the sensitivity of the model to mislabeled 

samples. However, these methods often suffer from underfitting on clean data, particularly in high-

dimensional spaces. 

 

2.2 Noise Detection and Correction Frameworks 

Methods such as confident learning [4] have focused on identifying and correcting label errors by leveraging 

predictions from a model trained on noisy data. Confident learning provides a statistical framework for 

estimating the joint distribution of noisy and clean labels. While effective in many scenarios, it assumes 

label noise is uniform across the dataset, which is rarely the case in real- world applications like revenue 

forecasting. Recent advancements have attempted to address feature-dependent noise, but they often rely on 

handcrafted heuristics [6], which lack generalizability. 

 

2.3 Applications of Noise-Robust Learning 

Domain-specific studies have highlighted the importance of addressing label noise in fields such as 

healthcare, natural language processing, and revenue forecasting. In healthcare, for instance, [1] surveyed 

noise-robust methods tailored to medical datasets where noise originates from subjective annotations. 

Similarly, in revenue forecasting, [7] emphasized the role of explainability in win-propensity prediction 

systems but did not explicitly tackle the challenge of label noise correction. FACLe builds upon these 

insights by introducing feature-aware noise correction that generalizes to structured data settings. 

 

2.4 Gaps in Existing Methods 

Despite significant progress, most existing approaches fail to address two critical challenges: (1) the 

dependency of label noise on input features and (2) the need for explainability in noise correction decisions. 

FACLe bridges thisgap by leveraging a feature-aware framework that dynamically models noise patterns 

while providing transparency into the correction process. Furthermore, our method demonstrates scalability 

and robustness across real-world datasets, setting a new benchmark for noise-aware learning in revenue 

forecasting. 

 

3 Methodology 

The Feature-Aware Confident Learning (FACLE) framework is designed to address the challenge of feature-

dependent label noise. By incorporating clustering to dynamically segment the data, FACLE enables noise 

correction tailored to localized noise patterns within each segment. This section outlines the methodology in 

detail, including the clustering process, noise correction within clusters, and the training of the final 

predictive model. The overall process is illustrated in Figure 1 below. 
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Figure 1: FACLe architecture and process 

3.1 Overview of FACLE 

FACLE combines clustering with confident learning to create a robust, feature- aware approach to label 

noise correction. The method is structured into the following stages: 

1. Clustering for Feature-Aware Segmentation: The dataset is partitioned into clusters based on feature 

distributions to identify regions with consistent noise patterns. 

2. Cluster-Specific Noise Correction: Within each cluster, confident learning is applied to estimate and 

correct noisy labels using a localized noise transition matrix. 

3. Final Model Training: A predictive model is trained on the globally corrected labels, leveraging the 

improved data quality. 

 

3.2 Clustering for Feature-Aware Segmentation 

To address feature-dependent noise, FACLE begins by segmenting the dataset into clusters where noise 

patterns are expected to be more consistent. Given features X ∈ Rn×d and noisy labels Y˜ , we apply a 

clustering algorithm (e.g., k-means) to partition the dataset into k clusters: 

Cluster Labels: C = k-means(X, k). 

Normalization and Clustering To ensure effective clustering, the features are normalized to have zero 

mean and unit variance. The choice of k, the number of clusters, can be determined using techniques such as 

the elbow method or silhouette analysis. The clustering process creates subgroups of data points with similar 

feature characteristics, enabling localized noise correction. 

 

3.3 Cluster-Specific Noise Correction 

Within each cluster, FACLE applies confident learning to estimate and correct noisy labels. For a cluster c, 

with data Xcand labels Y˜c, the noise transition matrix Tc is estimated: 

Tc= P (Y˜ | Y, Xc), 

where Tccaptures the likelihood of observing noisy labels Y˜c given the true labels 

Ycand the cluster features Xc. 
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c 

L L 

Applying Confident Learning Confident learning [4] is used within each cluster to identify likely 

mislabeled samples and provide corrected labels Y clean: 

Y clean = T−1Y˜c. 

c c 

The corrected labels are combined across all clusters to form the global corrected dataset Y clean: 

 

 

Handling Edge Cases Clusters with insufficient samples (e.g., fewer than 10) are skipped during noise 

correction to avoid unreliable estimates. Such samples can either retain their original noisy labels or be 

corrected using global confident learning. 

 

3.4 Final Model Training 

The globally corrected dataset (X, Y clean) is used to train a final predictive model gϕ, parameterized by ϕ. The 

model minimizes the cross-entropy loss: 

 

 

Model Selection The choice of predictive model (e.g., Random Forest, Gradient Boosting, or Neural 

Networks) depends on the application and dataset characteristics. FACLE ensures that the model is trained 

on labels with significantly reduced noise, enhancing its performance and generalizability. 

 

3.5 Workflow Summary 

The complete FACLE workflow is as follows: 

1. Normalize the features and apply clustering to segment the data. 

2. For each cluster: 

(a) Subset the data and labels. 

(b) Apply confident learning to estimate and correct noisy labels. 

(c) Combine corrected labels across clusters. 

3. Train a final predictive model on the corrected dataset. 

4. Evaluate the model using metrics such as average precision and revenue capture rate. 

 

3.6 Evaluation and Metrics 

To assess the effectiveness of FACLe, we evaluate its performance against two baselines: 

• Baseline: A model trained directly on noisy labels Y˜ without any correc- tion. 

• Confident Learning (CL): A model trained on pseudo-clean labels obtained from confident learning. 

Metrics The primary metric used for evaluation is the average precision (AP), derived from the precision-

recall curve. AP is a robust metric for imbalanced datasets and provides a comprehensive measure of model 

performance: 
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Where r represents the recall.  

Evaluation Procedure 

1. Train all models (Baseline, CL, and FACLe) on the training set. 

2. Evaluate the models on a held-out test set to compute the average precision. 

3. Compare the average precision scores across methods to quantify the improvement achieved by FACLe. 

Significance Testing To ensure the observed improvements are statistically significant, we perform paired t-

tests on the AP scores across multiple cross- validation splits. 

4 Results 

This section presents the results of applying the Feature-Aware Confident Learning (FACLe) methodology, 

focusing on three key aspects: improvements in precision-recall curves, enhancements in revenue capture 

rates, and robustness of the method alongside explainability outcomes. Each subsection includes 

placeholders for figures and tables to illustrate the results. 

 

4.1 Improvements in Precision-Recall Curve 

Precision-recall (PR) curves are critical for evaluating performance in datasets with imbalanced classes. 

FACLe demonstrates substantial improvements in the PR curve compared to both baseline methods and 

confident learning (CL). 

Experimental Results Figure 2shows the PR curves for the three approaches: Baseline, CL, and FACLe. 

FACLe consistently achieves higher precision across a wide range of recall values. Table 1provides the 

average precision (AP) scores for each method, confirming FACLe’s superior performance. 

 

Figure 2: Precision-recall curves for Baseline, Confident Learning, and FACLe. FACLe shows 

significant improvement in precision at all recall levels. 
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Method Average Precision (AP) 

Baseline 0.65 

With Confident Learning 0.69 

With FACLe 0.74 

Table 1: Average precision scores for each method for a sample service (Amazon EKS). FACLe 

achieves the highest AP, outperforming both Baseline and Confi- dent Learning. 

 

Insights The improvement in precision-recall curves highlights FACLe’s ability to accurately correct 

feature-dependent label noise, resulting in more reliable predictions. By leveraging feature-aware 

corrections, FACLe ensures that true positives are identified with minimal compromise on precision. 

 

4.2 Improvements in Revenue Capture Rate 

One of the most critical metrics for evaluating revenue opportunity models is the revenue capture rate, which 

measures the proportion of expected revenue (ARR) from high-probability opportunities correctly identified 

by the model. 

Specifically, we define it as 

Revenue Capture Rate (RCR) =   Launched ARR of top K scoring opportunities   

Launched ARR of K highest revenue opportunities 

Experimental Results Table 2quantifies the improvement in revenue capture rates for a sample service.for 

Baseline, CL, and FACLe. FACLe demonstrates a marked improvement, with an 5% increase compared to 

CL and a 15% increase over the Baseline. 

 

Method Revenue Capture Rate (%) 

Baseline 70.2 

Confident Learning 76.9 

FACLe 80.5 

Table 2: Revenue capture rates for each method. FACLe demonstrates significant improvement over 

Baseline and Confident Learning. 

Insights The increase in revenue capture rate underscores FACLe’s practical utility in revenue forecasting. 

By accurately identifying high-value opportunities, FACLe enables better resource allocation, leading to 

higher revenue conversion. 

 

4.3 Robustness and Explainability 

To further evaluate FACLe, we assess its robustness under varying levels of label noise and its explainability 

in identifying feature-dependent noise patterns. Robustness to Label Noise Figure 3shows FACLe’s 

performance across different noise levels (e.g., 10%, 20%, 30%). These are noise levels from different 

models corresponding to different services on the cloud. FACLe maintains a high average precision, 

significantly outperforming Baseline and CL even as noise increases. This robustness demonstrates FACLe’s 

ability to generalize well in noisy environments. 
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Figure 3: Performance of Baseline, Confident Learning, and FACLe under varying levels of label 

noise. FACLe remains robust across all noise settings. 

5 Conclusion 

In this work, we introduced Feature-Aware Confident Learning (FACLe), a novel framework designed to 

address feature-dependent label noise in supervised learning. FACLe extends the capabilities of traditional 

confident learning by leveraging a feature-aware noise transition matrix with the aid of clustering, 

dynamically modeling the relationship between input features and label noise. Our experiments demonstrate 

significant improvements in precision-recall performance, revenue capture rates, and robustness under 

varying noise levels.  

The results underscore the practical value of FACLe in real-world applications, particularly in revenue 

forecasting, where label noise arises from subjective evaluations and revenue attribution challenges. By 

enabling accurate identification and correction of noisy labels, FACLe not only improves predictive 

performance but also facilitates better decision-making, leading to tangible business outcomes. 

Despite its successes, FACLe opens avenues for future advancements. First, incorporating semi-supervised 

or unsupervised learning techniques could furtherenhance its ability to identify and correct label noise, 

particularly in scenarios with limited labeled data. Second, extending the explainability module to provide 

more granular insights into feature-label relationships could strengthen stakeholder confidence and aid in 

refining data collection processes. Third, optimizing the computational efficiency of FACLe for large-scale 

datasets would broaden its applicability across diverse domains. 

 

6 Appendix References 

[1]  Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: A survey. IEEE 

Transactions on Neural Networks and Learning Systems, 25(5):845–869, 2014. 

[2]  Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep neural 

networks. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pages 

1919–1925, 2017. 

[3]  Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution 

examples in neural networks. In International Conference on Learning Representations (ICLR), 2017. 

[4]  Curtis Northcutt, Lu Jiang, and Isaac L Chuang. Confident learning: Esti- mating uncertainty in dataset 

labels. Journal of Machine Learning Research, 22(103):1–37, 2021. 

[5]  Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep 

neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), pages 2233–2241, 2017. 

[6]  Yan Song, Xiaojie Peng, and Shanshan Zhang. Learning to aggregate and refine noisy labels for visual 

https://www.ijirmps.org/


Volume 11 Issue 5                                          @ September - October 2023 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2305232270          Website: www.ijirmps.org Email: editor@ijirmps.org 9 

 

object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), pages 21391–21400, 2022. 

[7]  Tiemo Thiess, Oliver Müller, and Lorenzo Tonelli. Design principles for explainable sales win-

propensity prediction systems. In Wirtschaftsinformatik (Zentrale Tracks), pages 326–340, 2020. 

https://www.ijirmps.org/

