E-KYC USING BLOCK CHAINING

¹Ms. Rupa Shinde, ²Ms. Madhuri Patil, ³Ms. Suvarna Shelke, ⁴Ms. Sonali Jadhav

MVPS's Rajarshi Shahu Maharaj Polytechnic, Nashik

Abstract

The know your customer or know your client (KYC) is a guideline for the banking system to validate a customer using identity, appropriateness, risk assessment in establishing a banking relationship. With the growing concern of security, the KYC process is complex and involves a high cost for completing for a single customer. In this work, we propose an economical, swift, secure, and transparent platform for KYC document verification for the Banking system through InterPlanetary File System (IPFS) and blockchain technology. The proposed system allows a customer to open an account at one Bank, complete the KYC process there, and generate a hash value using the IPFS network and share it using the blockchain technique. Upon receiving the private key, any Bank/financial organization can retrieve, store customer data (i.e., KYC) securely using IPFS network if the customer wishes to open another account in that Bank/financial organization. The proposed system can save time, money, and repetitive work during the KYC process when someone tries to open an account at multiple Banks.

Keywords: KYC, IPFS, DLT

Published in IJIRMPS (E-ISSN: 2349-7300), Volume 11, Issue 6, Nov.-Dec. 2023

License: Creative Commons Attribution-ShareAlike 4.0 International License

I. INTRODUCTION

A bank generally serves to a large client base in both retail and corporate sector. The 'Know Your Customer' process, also known as KYC, which helps the institution to verify identity of client. KYC is a Regulatory and legal requirement that must be fulfilled by the companies or financial institutions for both new and existing clients. The major challenge faced by banking sector is increased regulatory

cost of KYC process that has negative impact on business. The aim of this paper is to propose a new approach to the KYC verification process. We introduce a system, based on DLT that proposes a solution to the increased costs of the KYC process and the lack of customer satisfaction. The key reason for using DLT is that it allows us to observe the KYC cost structure at an aggregate level for all the financial institutions operating in a jurisdiction and to tackle the inefficiencies that emerge from the duplicated conduct of similar tasks by all participating institutions (i.e., DLT allows us to render the execution of duplicated tasks completely unnecessary, and this delivers far greater cost savings than would any effort to merely make these duplicated tasks more cost efficient)

Aims to be accomplished in our project are as follows: "we are intended to do this. We propose a solution based on Blockchain technology, which reduce the traditional KYC verification process cost. The Major addition to it is that the whole verification process is conducted only once for each customer, irrespective of the number of institutions they register and thereby increasing the transparency by securely sharing the results through DLT. This approach involves proof of concept (POC) with ethereum. This process reduces

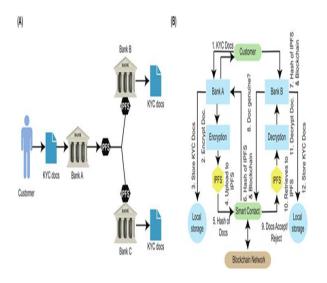
 (\mathbf{i})

cost overhead, improved customer experience and increases transparency. The 'Know Your Customer' process, also known as KYC, which helps the institution to verify identity of client. KYC is a Regulatory and legal requirement that must be fulfilled by the companies or financial institutions for both new and existing clients.

II RELATED WORK

Know your client (KYC) is a guideline for the banking system to validate a customer using identity, appropriateness, risk assessment in establishing a banking relationship. With the growing concern of security, the KYC process is complex and involves a high cost for completing for a single customer.

- 1. To Secure and faster for sharing sensitive information.
- 2. To allow customer and business institute to verify record customer record.
- 3. To allow third party verification.
- 4. More Secure due to block chain.


Pervasive Decentralization of Digital Infrastructures: A Framework for Blockchain Enabled System and Use Case AnalysisBlockchain technology recently draws the attention of the public, as a dispute that leads to the foundation that the trust - free economical transaction is possible with its distinctive method. A lightweight multitier s-mqtt framework to secure communication between low-end iot nodes

III PROBLEM FORMULATION

Know your client (KYC) is a guideline for the banking system to validate a customer using identity, appropriateness, risk assessment in establishing a banking relationship. With the growing concern of security, the KYC process is complex and involves a high cost for completing for a single customer.

I. System Architecture:

Following figure 1 shows the architecture of the system.

The aim of this paper is to propose a new approach to the KYC verification process. We introduce a system, based on DLT, that proposes a solution to the increased costs of the KYC process and the lack of customer satisfaction. The key reason for using DLT is that it allows us to observe the KYC cost structure at an aggregate level for all the financial institutions operating in a jurisdiction and to tackle the inefficiencies that emerge from the duplicated conduct of similar tasks by all participating institutions (i.e., DLT allows us to render the execution of duplicated tasks completely unnecessary, and this delivers far greater cost savings

than would any effort to merely make these duplicated tasks more cost efficient). Specifically, DLT enables the creation of

a chronological, decentralized, interbank ledger in which

Financial institutions that need to conduct the same. partitioned according to the BTC cube. The frequent itemset mining algorithm is run for all BTC cube data

Data integration: currently, several third-party data providers and external validation agencies offer data and interfaces to extract the required customer information. However, banks struggle to integrate this data to obtain a consolidated view of the customers. This has led to increasing instances of banks' failure to comply with regulatory requirements, resulting in huge penalties and reputational damage.

Expensive technology: post due diligence, banks

need to digitize data in the documents to feed it into the repositories. This is an expensive exercise, as it uses advanced technology platforms. Evolving regulation: the KYC landscape is constantly facing new regulation across different jurisdictions. Therefore, KYC utilities need to keep updating their guidelines. This increases the need

for banks to improve their data collection mechanisms for effective risk management and timely compliance.

Fragmented approach: banks do not have a single, unified KYC system for its various lines of business like wealth management, asset management, and brokerage. Maintaining these multiple systems and integrating different interfaces puts banks under immense pressure and adds costs.

Blockchains are a digital technology that combines cryptographic, data management, networking, and incentive mechanisms to support the checking, execution, and recording of transactions between parties. Blockchain technology ensures the elimination of the double-spend problem, with the help of public-key cryptography, whereby each agent is assigned a private key (kept secret like a password) and a public key shared with all other agents. The validity of the information stored on a blockchain's ledgers is ensured by the network's nodes with the help of a secure hash algorithm (SHA). Blockchain technology uses an SHA to translate the contents of a block into a cryptographic fingerprint referred to as a 'hash'. An SHA can also be used to generate from a digital document a unique 'fingerprint' of that document, such that this fingerprint cannot be replicated unless it is generated from the exact same document. This ensures that all of a blockchain's participants can easily verify the authenticity of any document previously hashed simply by hashing it again and comparing the hash they generate to the hash that was previously generated using the authentic document. Further, the hash does not reveal any information about the contents of a document, just as analyzing a human fingerprint can help one to prove the identity of an individual but fails to reveal –

Benefits

- Banks find the whole process extremely cost-effective.
- The process is much smoother for customers as
- they need to upload their details only once.
- The scope of popular KYC methods like eKYC is
- limited to India but this solution can be applied
- globally without any restrictions.

VII CONCLUSION

Blockchains represent the future of transactions and are beginning to transform entire industries. Consequently, there is considerable interest in exploring blockchains for various industry use cases. They are particularly useful in supporting multi-party business transactions where the entities need not trust each other. The immutable, cryptographically secured, and replicated, ledger, consensus to validate transactions, and permissioned access are all attractive salient attributes for enterprises to consider blockchains as the future transaction network.

REFERENCES

[1] Implementation of Least Significant Bit Image Steganography with Advanced Encryption Standard Adit Pabbi;Rakshit Malhotra;K Manikandan 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) [2021]

[2] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, "Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts," IEEE Symposium on Security and Privacy, 2016,pp 839-858. "Consumer Digital Identity: Leveraging Distributed Privacy Enhancing Technology," (White Paper: Secure Key):https://securekey.com/resources/consumer-digital-identity/

[3] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, "Zerocash: Decentralized Anonymous Payments from Bitcoin," IEEE Symposium on Security & Privacy (Oakland) 2014,pp 459-474, IEEE, 2014.

[4] C. Garman, M. Green, and I. Miers, "Accountable privacy for decentralized anonymous payments", International Conference on Financial Cryptography and Data Security (Barbados), pp. 81-98,2016.

[5] "Zero-knowledge Security Layer to be Added to Quorum Blockchain Platform", Press Release: https://z.cash/blog/zsl-quorum.html

[6] A. M. Antonopoulos, "Mastering Bitcoin: Unlocking Digital CryptoCurrencies" (1st ed.). O'Reilly Media, Inc., 2014.

[7] "A Next-Generation Smart Contract and Decentralized Application Platform" (Whitepaper):https://github.com/ethereum/wiki/White-Paper

[8] "What it means to 'Know Your Customer": https://complyadvantage.com/knowledgebase/kyc/

[9] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance", In Proceedings of the Third Symposium on Operating Systems Design and Implementation (OSDI '99). USENIX Association, Berkeley, CA,USA, 173-186, 1999.

[10] N. Garg, "Apache Kafka. Packt Publishing", 2013.

[11] "IBM Blockchain Platform":

https://console.bluemix.net/docs/services/blockchain/index.html#ibmblockchain-platform

[12] "Hyperledger Fabric v0.6.1: Protocol Specification": https://github.com/hyperledger/fabric/blob/v0.6.1-