
Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Kubernetes Etcd Implemantation Using Btree and

Fractal Trees

Renukadevi Chuppala1, Dr. B. PurnachandraRao2

Western Union Financial Services, CA, USA

Sr. Solutions Architect, HCL Technologies, Bangalore, Karnataka, India.

Abstract

Etcd is a distributed key-value store that provides a reliable way to store and manage data in a distributed

system. Here's an overview of etcd and its role in Kubernetes. Etcd ensures data consistency and durability

across multiple nodes, provides distributed locking mechanisms to prevent concurrent modifications,

facilitates leader election for distributed systems. Etcd uses a distributed consensus algorithm (Raft) to

manage data replication and ensure consistency across nodes. Etcd nodes form a cluster, ensuring data

availability and reliability. stores data as key-value pairs., provides watchers for real-time updates on key

changes, supports leases for distributed locking and resource management, Etcd serves as the primary data

store for Kubernetes, responsible for storing and managing Cluster state i.e, Node information, pod status,

and replication controller data, Configuration data like Persistent volume claims, secrets, and config maps,

Network policies i.e, Network policies and rules, High availability that ensures data consistency and

availability across nodes, Distributed locking i.e, Prevents concurrent modifications and ensures data

integrity. Scalability Supports large-scale Kubernetes clusters. When ever we are sending apply command

using kubectl or any other client API Server authenticates the request, authorizes the same, and updates to

etcd on the new configuration. Etcd receives the updates (API Server sends the updated configuration to

etcd), then etcd writes the updated configuration to its key-value store. Etcd replicates the updated data

across its nodes and it ensures data consistency across all the nodes. We can say that ETCD is the main

storage of the cluster. It carries the cluster state by storing the latest state at key value store. In this paper we

will discuss about implementation of ETCD using BTree and Factal Tree. Factal tree outperforms BTree in

some scenarios. We will work on to prove that Factal Tree implementation provides better performance than

BTree.

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service, IP-

Tables, Load Balancer, Service Abstraction, , BTree, Factal Tree, ETCD.

INTRODUCTION

Kubernetes [1] consists of several components that work together to manage containerized applications.

Master Node: This controls the overall cluster, handling scheduling and task coordination.API Server [2]

Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes work across

the nodes based on workload requirements..Controller Manager: Ensures that the current state matches the

desired state by managing the cluster’s control loops. Etcd [3] is an open-source, distributed key-value store

that provides a reliable way to store and manage data in a distributed system. It is designed to be highly

available, fault-tolerant, and scalable. Features are Distributed architecture, Key-value store, Leader

election, Distributed locking, Watchers for real-time updates, Leases for resource management ,

Authentication and authorization, Support for multiple storage backends (e.g., BoltDB, RocksDB) [4]. And

the APIs are put to Store a key-value pair, get to retrieve a value by key, delete to remove a key-value pair,

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 2

watch to watch for changes to a key , and lease to acquire a lease for resource management. Kube-proxy

[5]: Manages network communication within and outside the cluster. Pod: The smallest deployable unit in

Kubernetes, encapsulating one or more containers with shared storage and network resources. All containers

in a pod run on the same node.Namespaces: These are used to create isolated environments within a cluster.

They allow teams to share the same cluster resources without conflicting with each other. Deployment: A

higher-level abstraction that manages the creation and scaling of Pods. It also allows for updates, rollbacks,

and scaling of applications. Designed to manage stateful applications, where each Pod has a unique identity

and persistent storage, such as databases. DaemonSet [6] Ensures that a copy of a Pod is running on all (or

some) nodes. This is useful for deploying system services like log collectors or monitoring agents.Job: A

Kubernetes resource that runs a task until completion. Unlike Deployments or Pods, a Job does not need to

run indefinitely.CronJob: Runs Jobs at specified intervals, similar to cron jobs in Linux.

LITERATURE REVIEW

Kubernetes Cluster

A cluster refers to the set of machines (physical or virtual) that work together to run containerized

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it

provides a platform for deploying, managing, and scaling containerized workloads.

Fig: 1

Fig 1. Shows the Kubernetes cluster architecture. This shows three worker nodes and one control plane.

Control plane is having four components API Server , Scheduler , Controller and ECTD. Pods are deployed

to nodes using scheduler. Client kubectl will connect to API server (part of Master Node) to interact with

Kubernetes resources like pods, services, deployment etc. Client will be authenticated through API server

having different stages like authentication and authorization. Once the client is succeeded though

authentication and authorization (RBAC plugin) it will connect with corresponding resources to proceed

with further operations. Etcd is the storage location for all the kubernetes resources. Scheduler will select

the appropriate node for scheduling [7] the pods unless you have mentioned node affinity (this is the

provision to specify the particular node for accommodating the pod). Kubelet is the process which is

running on all nodes of the kubernetes cluster and it will manage the mediation between api server and

corresponding node. Communication between any entity with master node is going to happen only through

api server.

Key Components of a Kubernetes Cluster:

Control Plane (Master Node):

API Server: Exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications,

scaling, etc.) go through the API server.

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 3

etcd: A distributed key-value [8] store that holds the state and configuration of the cluster, including

information about pods, services, secrets, and configurations.

Controller Manager: Ensures that the cluster's desired state matches its actual state, by managing different

controllers (like deployment, replication, etc.).

Scheduler [9]: Assigns workloads to worker nodes based on resource availability, scheduling policies, and

requirements.

Worker Nodes:

Kubelet: The agent running on each node that ensures containers are running in Pods as specified by the

control plane.

Container Runtime [10]: The software responsible for running containers (e.g., Docker, containerd).

Kube-proxy: Manages network [11] traffic between pods and services, handling routing, load balancing, and

network rules.

How a Kubernetes Cluster Works:

Pods: The smallest deployable units in Kubernetes, consisting of one or more containers. They run on

worker nodes and are managed by the control plane.

Nodes: Physical or virtual machines in the cluster that host Pods and execute application workloads.

Services: Provide stable networking and load balancing for Pods within a cluster.

Cluster Operations:

Scaling [12][22] Kubernetes clusters can automatically scale up or down by adding/removing nodes or pods.

Resilience: Clusters are designed for high availability and can automatically restart failed pods or reschedule

them on healthy nodes.

Load Balancing: Kubernetes ensures traffic is evenly distributed across Pods within a Service.

Self-Healing: The control plane continuously monitors the state of the cluster and acts to correct failures or

discrepancies between the desired and current state.

Service Abstraction [13][32] in Kubernetes provides a way to define a logical set of Pods and a policy by

which to access them. This abstraction enables communication between different application components

without needing to know the underlying details of each component's location or state.

Stable Network Identity: Services provide a stable IP address and DNS name that can be used to reach Pods,

which may be dynamically created or destroyed.

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a load

balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods.

Service Types: Kubernetes supports different types of services:

ClusterIP [14][23][24] The default type, which exposes the service on a cluster-internal IP. Only accessible

from within the cluster.

NodePort: Exposes the service on each Node’s IP at a static port (the NodePort). This way, the service can

be accessed externally.

LoadBalancer: Automatically provisions a load balancer for the service when running on cloud providers.

ExternalName: Maps the service to the contents of the externalName field (e.g., an external DNS name).

Iptables Coordination:

Iptables [15][39][40]is a user-space utility program that allows a system administrator to configure the IP

packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to manage the

networking rules that govern how traffic is routed to the various services.

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 4

Fig 2: ETCD Architecture

Key Functions:

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined service

configurations.

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP

addresses of packets as they pass through, which is crucial for services that need to expose Pods to external

traffic.

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent back to

the correct Pod.

Service and IP Table:

Service Request: A request is sent to the service's stable IP address.

Kubernetes Networking [16][35][36]: Kubernetes uses iptables to manage the routing of this request. It sets

up rules to map the service IP to the IP addresses of the underlying Pods.

Load Balancing: Iptables distributes incoming traffic among the Pods that match the service's selector,

ensuring load balancing.

Return Traffic [17][37][38] When a Pod responds, iptables ensures that the response goes back through the

same network path, maintaining connection tracking.

 Service abstraction in Kubernetes provides a simplified and stable interface for accessing application

components, while iptables [18][33][34] coordination ensures that the network traffic is efficiently routed to

the right Pods. Together, they form a robust networking framework that is fundamental to the operation of

Kubernetes clusters. Three node , four node , five node , six node , seven node , eight node , nine node and

ten node clusters have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32

GB and 350 GB for all worker nodes. The existing IP table has been implemented with Trie tree

implementation. A Trie Tree, also known as a Prefix Tree, is a specialized tree data structure used to store

associative data structures, often to represent strings. The key characteristic of a Trie is that all descendants

of a node share a common prefix of the string associated with that node. This structure is particularly useful

for tasks that involve searching for prefixes, such as auto complete systems, dictionaries, and IP routing

tables.

API Server

Scheduler

ET

CD

Con

troller

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 5

The above code shows the implementation of the ETCD using BTree. Once we are done with this we need

to findout the stats for the different parameters. Imported couple of packages , followed by created the

structure Etcd having the fields BTreeNode [19][25][26] , WAL. These two are pointers and pointing to

tree and wal respectively. We have defined put and get operations including delete operation.

Once we have implemented ETVD using BTree , have created test code to interact with ETCD so that we

can get the stats of the different parameters. This will provide insertion time , deletion time , search time and

complexity [20][27][28][29]. We have calculated the stats for different sizes of the ETCD data store.

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 6

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 100 90 70 40 O(n) O(log n)

24GB 120 100 80 42 O(n) O(log n)

32GB 140 110 90 45 O(n) O(log n)

40GB 160 130 100 47 O(n) O(log n)

48GB 180 150 110 50 O(n) O(log n)

64GB 200 170 130 55 O(n) O(log n)

Table 1: ETCD Parameters : BTree-1

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have collected

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n)

and time complexity is O(logn), n represents the number of entries at the data store.

Graph 1: ETCD Parameters : BTree- 1

Graph 1 shows the different parameters except cpu usage since it is carrying % as units.

Graph 2: ETCD – CPU Usage-1

Graph 2 shows the CPU usage of the ETCD data store having the BTree implementation.

0

20

40

60

80

100

120

140

160

180

200

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 7

Store

Size

space complexity

O(n)

Time complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 2: ETCD BTree Complexity-1

Table 2 carries the values for Space and Time complexity for BTree implementation of key value store for

first sample.

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table.

Graph 3: ETCD BTree Complexity-1

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage (%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 105 95 75 38 O(n) O(logn)

24GB 125 105 85 40 O(n) O(logn)

32GB 145 115 95 43 O(n) O(logn)

40GB 165 135 105 46 O(n) O(logn)

48GB 185 155 115 48 O(n) O(logn)

64GB 205 175 135 52 O(n) O(logn)

Table 3: ETCD Parameters : BTree-2

As shown in the Table 2, We have collected for different sizes of the ETCD data store. We have collected

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n)

and time complexity is O(logn), n represents the number of entries at the data store.

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn) Log. (space complexity O(n))

Log. (Time complexity O(logn)) Log. (Time complexity O(logn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 8

Graph 4: ETCD Parameters : BTree- 2

Graph 5: ETCD – CPU Usage-2

Graph 4 shows the different parameters of the ETCD BTree implementation. Graph 5 shows the CPU usage.

Table 2 , Graph4 and 5 are having the data from second sample.

Store Size space complexity O(n) Time complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 4: ETCD BTree Complexity-2

Table 4 carries the values for Space and Time complexity for BTree implementation of key value store for

second sample.

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table

0

50

100

150

200

250

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 9

Graph 6: ETCD BTree Complexity-2

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage (%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 110 100 80 37 O(n) O(logn)

24GB 130 110 90 39 O(n) O(logn)

32GB 150 120 100 42 O(n) O(logn)

40GB 170 140 110 45 O(n) O(logn)

48GB 190 160 120 47 O(n) O(logn)

64GB 210 180 140 51 O(n) O(logn)

Table 5: ETCD Parameters (BTree Implementation)

We have collected third sample from the ETCD operation (which was implemented using BTree data

structure). Table 3 is having the parameters are avg insertion time, deletion time, avg search time, cpu usage

, space and time complexity. As usual , the values are going high while increasing the size of the data store.

Graph 7 : ETCD Parameters : BTree- 3

16

24

32
40

48

64

4
4.58

5 5.32 5.58 6

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn) Log. (space complexity O(n))

Log. (Time complexity O(logn)) Log. (Time complexity O(logn))

0

50

100

150

200

250

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 10

Graph 8: ETCD – CPU Usage-3

Graph 7 and 8 shows the data from the Table 3. Since the CPU usage is in % units, we have created

different graph.

Store

Size

space complexity

O(n)

Time complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 6: ETCD BTree Complexity-3

Table 6 carries the values for Space and Time complexity for BTree implementation of key value store for

third sample.

Graph 9: ETCD BTree Complexity-3

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

37
39

42
45

47
51

Avg CPU Usage (%)

16

24

32
40

48

64

4
4.58 5 5.32 5.58 6

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)
Log. (space complexity O(n)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 11

Store Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time

Complexity

(Insertion,

Deletion,

Search)

16GB 115 105 85 37 O(n) O(logn)

24GB 135 120 95 41 O(n) O(logn)

32GB 155 130 105 44 O(n) O(logn)

40GB 175 150 115 46 O(n) O(logn)

48GB 195 170 125 49 O(n) O(logn)

64GB 215 190 140 53 O(n) O(logn)

Table 7: ETCD Parameters (BTree Implementation)

Table 4, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for the

Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to

create hierarchical namespaces.

Graph 10 : ETCD Parameters : BTree- 4

Graph 11: ETCD – CPU Usage-4

Logarithmic Graph

Graph 10 shows the avg insertion time, deletion time , search time and Graph 11 shows CPU usage from the

fourth sample.

0

50

100

150

200

250

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 12

Store Size space complexity O(n) Time complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 8: ETCD BTree Complexity-4

Table 8 carries the values for Space and Time complexity for BTree implementation of key value store for

fourth sample.

Graph 12: ETCD – Complexity-4

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table.

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 120 110 90 38 O(n) O(logn)

24GB 140 130 100 42 O(n) O(logn)

32GB 160 140 110 45 O(n) O(logn)

40GB 180 160 120 48 O(n) O(logn)

48GB 200 180 130 51 O(n) O(logn)

64GB 220 200 150 55 O(n) O(logn)

Table 9: ETCD Parameters (BTree Implementation)

Table 9 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time, search

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space complexity is

uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is also same

irrespective of the size of the store. ETCD GET operation retrieves a value from the store and the syntax ,

etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the context for the Get

operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to

create hierarchical namespaces.

16

24
32

40
48 64

4
4.58 5 5.32 5.58 6

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn) Log. (space complexity O(n))

Log. (Time complexity O(logn)) Log. (Time complexity O(logn)) Log. (Time complexity O(logn))

Log. (Time complexity O(logn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 13

Graph 13 : ETCD Parameters : BTree- 5

Graph 14: ETCD – CPU Usage-5

Graph 13 shows the avg insertion time, deletion time , search time and Graph 14 shows CPU usage from the

fifth sample.

Store

Size

space complexity

O(n)

Time complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 10: ETCD BTree Complexity-5

Table 10 carries the values for Space and Time complexity for BTree implementation of key value store for

fifth sample

Graph 15: ETCD – Complexity-5

0

50

100

150

200

250

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

16

24

32
40 48 64

4
4.58 5 5.32 5.58 6

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)
Log. (space complexity O(n)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 14

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table.

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage (%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 125 115 95 39 O(n) O(logn)

24GB 145 135 105 43 O(n) O(logn)

32GB 165 145 115 46 O(n) O(logn)

40GB 185 165 125 50 O(n) O(logn)

48GB 205 185 135 53 O(n) O(logn)

64GB 225 205 155 57 O(n) O(logn)

Table 11: ETCD Parameters (BTree Implementation)

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value pair

from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts provides

additional options for the Get operation. And the options include WithRange: Retrieves a range of keys,

WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a given prefix,

WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 6 shows the all

parameters from the sixth sample.

Graph 16 : ETCD Parameters : BTree- 6

Graph 17: ETCD – CPU Usage-6

0

50

100

150

200

250

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

39
43

46
50

53
57

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 15

Graph 16 and 17 shows the parameters from the sixth sample. Avg Insertion time, deletion time, avg search

time shows in micro seconds where as CPU usage is in %. As usual the values are going high while

increasing the size of the data store. Space complexity is same O(n) for all the sizes of the data store. Time

complexity is O(logn) irrespective of the datastore, n represents the number of entries at the data store.

Store

Size

space complexity

O(n)

Time complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 12: ETCD BTree Complexity-6

Table 12 carries the values for Space and Time complexity for BTree implementation of key value store for

sixth sample.

Graph 18: ETCD – Complexity-6

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table.

PROPOSAL METHOD

Problem Statement

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes. We

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state at

key value store. Implementation of the ETCD using the BTree data structure is having performance issue.

We will address these issues slowness by using another data structure.

Proposal

A Fractal Tree [21][30] is a data structure that combines the benefits of trees and fractals to efficiently store

and retrieve data. It's a self-similar tree structure, meaning that each subtree is a smaller version of the larger

tree. Features of Fractal tree is Self-similarity, each node has a similar structure to the entire tree, Subtrees

are smaller versions of the larger tree, Balanced: Trees are approximately balanced to ensure efficient

search, Variable branching factor i.e, each node can have a different number of children. Using Fractal we

will implement the Data Store ETCD , and will perform all these operations like insrertion [22][31] of the

16

24
32

40
48 64

4
4.58 5 5.32 5.58 6

1

2

4

8

16

32

64

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)
Log. (space complexity O(n)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn)) Log. (Time complexity O(logn))
Log. (Time complexity O(logn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 16

key, deletion of the key, search time, CPU usage and space , time complexities.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have

been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all

worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB data store

capacities (ETCD store capacities). We will test the different operations performances using Fractal tree

implementation of the key value store and compare with the previous results which we had so far in the

literature survey.

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 17

The following code shows the numerical stats collection.

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 18

The above code shows the implementation of the ETCD using Fractal Tree. Once we are done with this we

need to findout the stats for the different parameters. Imported couple of packages , followed by created the

structure Etcd having the fields Fractal Tree, WAL. These two are pointers and pointing to tree and wal

respectively. We have defined put and get operations including delete operation.

Once we have implemented ETVD using BTree , have created test code to interact with ETCD so that we

can get the stats of the different parameters. This will provide insertion time , deletion time , search time and

complexity. We have calculated the stats for different sizes of the ETCD data store.

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 70 60 50 45 O(n⋅logBn) O(logBn)

24GB 75 65 55 47 O(n⋅logBn) O(logBn)

32GB 80 70 60 49 O(n⋅logBn) O(logBn)

40GB 90 75 65 50 O(n⋅logBn) O(logBn)

48GB 100 80 70 52 O(n⋅logBn) O(logBn)

64GB 110 90 80 55 O(n⋅logBn) O(logBn)

Table 13: ETCD Parameters (Fractal Tree Implementation)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 19

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have collected

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the

values are getting increased while the size of the ETCD data store is growing up. Space complexity is

O(nlogBn) and time complexity is O(logBn), n represents the number of entries at the data store.

Graph 19: ETCD Parameters : Fractal Tree- 1

Graph 19 shows the different parameters of the Fractal implementation of the data store.

Graph 20: ETCD – CPU Usage-1

Graph 20 shows the CPU usage of the ETCD data store having the Fractal implementation.

The branching factor B is the average number of children each node has in a multi-way tree structure, like a

B-tree or Fractal Tree. It essentially represents how "wide" the tree is at each level. O(nlogBn): Often

describes operations on entire datasets, where nnn is the number of elements, and B is the branching factor.

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 20

This complexity appears in cases where we need to perform multiple operations across all elements, each

involving a logarithmic traversal based on the branching factor. O(logBn): Applies to individual operations

(like insertion, search, or deletion), as the height of the tree is proportional to logBn. Since the tree is B-way,

each level of traversal splits into B branches, reducing the number of levels required as B increases.

Let's assume a uniform branching factor (B) of 4 for both B-Tree and Fractal Tree.

 Fractal Tree with B=4

- O(search): O(log_B n) = O(log_4 n)

- O(insert): O(log_B n) = O(log_4 n)

- O(delete): O(log_B n) = O(log_4 n)

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 14: ETCD Fractal Tree Complexity-1

Table 14 carries the values for Space and Time complexity for Fractal Tree implementation of key value

store for first sample.

Graph 21: ETCD – Complexity-1

Please find the Logarithmic graph using the calculation with branch as 4 , O(nlogBn) and O(logBn) for the

n values as 16, 24, 32, 40, 48 and 64 .

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 75 65 55 42 O(n⋅logBn) O(logBn)

24GB 80 70 60 44 O(n⋅logBn) O(logBn)

32GB 85 75 65 46 O(n⋅logBn) O(logBn)

40GB 95 80 70 48 O(n⋅logBn) O(logBn)

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

15.5

35.5

55.5

75.5

95.5

115.5

135.5

155.5

175.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn) Log. (space complexity O(nlogBn))

Log. (space complexity O(nlogBn)) Log. (space complexity O(nlogBn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 21

48GB 105 90 75 50 O(n⋅logBn) O(logBn)

64GB 115 100 85 53 O(n⋅logBn) O(logBn)

Table 15: ETCD Parameters (Fractal Tree Implementation)

As shown in the Table 2, We have collected for different sizes of the ETCD data store. We have collected

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n)

and time complexity is O(logn), n represents the number of entries at the data store.

Graph 22: ETCD Parameters : Fractal Tree- 2

Graph 23: ETCD – CPU Usage-2

Higher branching factor B results in shorter tree heights, reducing time complexity for search and insert

operations. However, increasing B also increases the number of children each node must handle, potentially

impacting cache efficiency and other factors.

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 16: ETCD Fractal Tree Complexity-2

Table 16 carries the values for Space and Time complexity for Fractal Tree implementation of key value

store for second sample.

0

20

40

60

80

100

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 22

Graph 24: ETCD – Complexity-2

Please find the Logarithmic graph at Graph 24 using the calculation with branch as 4 , O(nlogBn) and

O(logBn) for the n values as 16, 24, 32, 40, 48 and 64 .

.Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 80 70 60 43 O(n⋅logBn) O(logBn)

24GB 85 75 65 45 O(n⋅logBn) O(logBn)

32GB 90 80 70 47 O(n⋅logBn) O(logBn)

40GB 100 85 75 49 O(n⋅logBn) O(logBn)

48GB 110 95 80 51 O(n⋅logBn) O(logBn)

64GB 120 105 90 54 O(n⋅logBn) O(logBn)

Table 17 : ETCD Parameters (Fractal Tree Implementation)

Table 4, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for the

Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to

create hierarchical namespaces.

Graph 25: ETCD Parameters : Fractal Tree- 3

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

45.5

95.5

145.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn)

Log. (space complexity O(nlogBn)) Log. (space complexity O(nlogBn))

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 23

Graph 26: ETCD – CPU Usage-3

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 18: ETCD Fractal Tree Complexity-3

Table 18 carries the values for Space and Time complexity for Fractal Tree implementation of key value

store for third sample.

Graph 27: ETCD – Complexity-3

Please find the Logarithmic graph at Graph 27 using the calculation with branch as 4 , O(nlogBn) and

O(logBn) for the n values as 16, 24, 32, 40, 48 and 64 .

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 85 75 65 44 O(n⋅logBn) O(logBn)

24GB 90 80 70 46 O(n⋅logBn) O(logBn)

32GB 95 85 75 48 O(n⋅logBn) O(logBn)

40GB 105 95 80 51 O(n⋅logBn) O(logBn)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

15.5

35.5

55.5

75.5

95.5

115.5

135.5

155.5

175.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn)
Log. (space complexity O(nlogBn)) Log. (space complexity O(nlogBn))
Log. (space complexity O(nlogBn)) Log. (Time complexity O(logBn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 24

48GB 115 105 85 54 O(n⋅logBn) O(logBn)

64GB 125 115 95 57 O(n⋅logBn) O(logBn)

Table 19: ETCD Parameters (Fractal Tree Implementation)

Table 5 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time, search

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space complexity is

uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is also same

irrespective of the size of the store. ETCD GET operation retrieves a value from the store and the syntax ,

etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the context for the Get

operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to

create hierarchical namespaces

Graph 28: ETCD Parameters : Fractal Tree- 4

Graph 29: ETCD – CPU Usage-4

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 20: ETCD Fractal Tree Complexity-4

Table 20 carries the values for Space and Time complexity for Fractal Tree implementation of key value

0

20

40

60

80

100

120

140

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 25

store for fourth sample.

Graph 30: ETCD – Complexity-4

Please find the Logarithmic graph at Graph 27 using the calculation with branch as 4 , O(nlogBn) and

O(logBn) for the n values as 16, 24, 32, 40, 48 and 64 .

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 90 80 70 45 O(n⋅logBn) O(logBn)

24GB 95 85 75 47 O(n⋅logBn) O(logBn)

32GB 100 90 80 49 O(n⋅logBn) O(logBn)

40GB 110 100 85 52 O(n⋅logBn) O(logBn)

48GB 120 110 90 55 O(n⋅logBn) O(logBn)

64GB 130 120 100 58 O(n⋅logBn) O(logBn)

Table 21: ETCD Parameters (Fractal Tree Implementation)

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value pair

from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts provides

additional options for the Get operation. And the options include WithRange: Retrieves a range of keys,

WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a given prefix,

WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 6 shows the all

parameters from the sixth sample.

Graph 31: ETCD Parameters : Fractal Tree- 5

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

15.5

35.5

55.5

75.5

95.5

115.5

135.5

155.5

175.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn)

Log. (space complexity O(nlogBn)) Log. (Time complexity O(logBn))

0

20

40

60

80

100

120

140

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 26

Graph 32: ETCD – CPU Usage-5

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 22: ETCD Fractal Tree Complexity-5

Table 22 carries the values for Space and Time complexity for Fractal Tree implementation of key value

store for fifth sample.

Graph 33: ETCD – Complexity-5

Please find the Logarithmic graph at Graph 33 using the calculation with branch as 4 , O(nlogBn) and

O(logBn) for the n values as 16, 24, 32, 40, 48 and 64 .

Store

Size

(GB)

Avg

Insertion

Time (µs)

Avg

Deletion

Time (µs)

Avg

Search

Time (µs)

Avg CPU

Usage

(%)

Space

Complexity

Time Complexity

(Insertion, Deletion,

Search)

16GB 95 85 75 46 O(n⋅logBn) O(logBn)

24GB 100 90 80 48 O(n⋅logBn) O(logBn)

32GB 105 95 85 50 O(n⋅logBn) O(logBn)

40GB 115 105 90 53 O(n⋅logBn) O(logBn)

48GB 125 115 95 56 O(n⋅logBn) O(logBn)

64GB 135 125 105 59 O(n⋅logBn) O(logBn)

Table 23: ETCD Parameters (Fractal Tree Implementation)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

15.5

35.5

55.5

75.5

95.5

115.5

135.5

155.5

175.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn)

Log. (space complexity O(nlogBn)) Log. (Time complexity O(logBn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 27

Graph 34: ETCD Parameters : Fractal Tree- 6

Graph 35: ETCD – CPU Usage-6

Store Size space complexity O(nlogBn) Time complexity O(logBn)

16GB 32 2

24GB 54.24 2.26

32GB 80 2.5

40GB 108 2.7

48GB 136.8 2.85

64GB 192 3

Table 24: ETCD Fractal Tree Complexity-6

Table 24 carries the values for Space and Time complexity for Fractal Tree implementation of key value

store for sixth sample.

Graph 36: ETCD – Complexity-6

Please find the Logarithmic graph at Graph 36 using the calculation with branch as 4 , O(nlogBn) and

0

20

40

60

80

100

120

140

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

32

54.24

80

108

136.8

192

2 2.26 2.5 2.7 2.85 3
-4.5

15.5

35.5

55.5

75.5

95.5

115.5

135.5

155.5

175.5

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(nlogBn) Time complexity O(logBn)

Log. (space complexity O(nlogBn)) Log. (Time complexity O(logBn))

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 28

O(logBn) for the n values as 16, 24, 32, 40, 48 and 64 .

Graph 37: ETCD BTree Vs Fractal Tree-1.1

Graph 37, shows the Avg Insertion time difference between BTree and Fractal Tree implementation. As per

the graph the time trend is going down as move from BTree to Fractal Tree implementation. The same

observation we can have with other parameters like avg deletion time and avg search time.

Graph 38: ETCD BTree Vs Fractal Tree-1.2

Graph 38 shows the CPU usage difference between BTRee implementation and Fractal Tree

implementation. CPU usage is going high since we are dealing with complexity in the implementation. We

will address the resolution of this issue in future work.

Graph 39: ETCD BTree Vs Fractal Tree-2.1

Graph 39, is the comparison between BTree and Fractal Tree implementation of the key value store

(ETCD). The graph shows the Avg Insertion time difference between BTree and Fractal Tree

implementation. As per the graph the time trend is going down as move from BTree to Fractal Tree

implementation. The same observation we can have with other parameters like avg deletion time and avg

0

20

40

60

80

100

120

140

160

180

200

Avg Insertion

BTree

Avg Insertion

Fractal

Avg Deletion

Btree

Avg Deletion

Fractal

Avg Search

Btree

Avg Search

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage Btree Avg CPU Usage Fractal Tree

0

50

100

150

200

250

Avg

Insertion

BTree

Avg

Insertion

Fractal

Avg

Deletion

Btree

Avg

Deletion

Fractal

Avg Search

Btree

Avg Search

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 29

search time.

Graph 40: ETCD BTree Vs Fractal Tree-2.2

Graph 40 shows the CPU usage difference between BTRee implementation and Fractal Tree

implementation. Since qwe are using branching strategy in the Tree data structure, CPU usage will be

increased. CPU usage is going high since we are dealing with complexity in the implementation. We will

address the resolution of this issue in future work.

Graph 41: ETCD BTree Vs Fractal Tree-3.1

Graph 41, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD)

for the third sample. The graph shows the Avg Insertion time difference between BTree and Fractal Tree

implementation. As per the graph the time trend is going down as move from BTree to Fractal Tree

implementation. The same observation we can have with other parameters like avg deletion time and avg

search time.

Graph 42: ETCD BTree Vs Fractal Tree-3.2

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage- BGTree Avg CPU Usage- Fractal Tree

0

20

40

60

80

100

120

140

160

180

200

Avg

Insertion -

BTree

Avg

Insertion

Fractal

Avg

Deletion-

BTree

Avg

Deletion -

Fractal

Avg

Search-

BTree

Avg

Search -

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage-Btree Avg CPU Usage Fractal Tree

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 30

Graph 43: ETCD BTree Vs Fractal Tree-4.1

Graph 43, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD)

for the fourth sample. Since we are using the branching strategy , the avg of all the parameters are going

down. The graph shows the Avg Insertion time difference between BTree and Fractal Tree implementation.

As per the graph the time trend is going down as move from BTree to Fractal Tree implementation. The

same observation we can have with other parameters like avg deletion time and avg search time.

Graph 44: ETCD BTree Vs Fractal Tree-4.2

Graph 44 shows the CPU usage difference between BTRee implementation and Fractal Tree

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be

increased. CPU usage is going high since we are dealing with complexity in the implementation. We will

address the resolution of this issue in future work.

Graph 45: ETCD BTree Vs Fractal Tree-5.1

Graph 45, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD)

for the third fifth. The graph shows the Avg Insertion time difference between BTree and Fractal Tree

implementation. As per the graph the time trend is going down as move from BTree to Fractal Tree

0

50

100

150

200

250

Avg Insertion

Btree

Avg Insertion

Fractal

Avg Deletion

Btree

Avg Deletion

Fractal

Avg Search Btree Avg Search

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage Btree Avg CPU Usage Fractal

0

50

100

150

200

250

Avg Insertion

Btree

Avg Insertion

Fractal

Avg Deletion

Btree

Avg Deletion

Fractal

Avg Search Btree Avg Search

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 31

implementation. The same observation we can have with other parameters like avg deletion time and avg

search time.

Graph 46: ETCD BTree Vs Fractal Tree-5.2

Graph 46 shows the CPU usage difference between BTRee implementation and Fractal Tree

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be

increased. CPU usage is going high since we are dealing with complexity in the implementation.

Graph 47: ETCD BTree Vs Fractal Tree-6.1

Graph 47, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD)

for the sixth sample. The graph shows the Avg Insertion time difference between BTree and Fractal Tree

implementation. As per the graph the time trend is going down as move from BTree to Fractal Tree

implementation. The same observation we can have with other parameters like avg deletion time and avg

search time.

Graph 48: ETCD BTree Vs Fractal Tree-6.2

Graph 48 shows the CPU usage difference between BTRee implementation and Fractal Tree

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage Btree Avg CPU Usage Fractal

0

50

100

150

200

250

Avg

Insertion

Btree

Avg

Insertion

Fractal

Avg

Deletion

Btree

Avg

Deletion

Fractal

Avg Search

Btree

Avg Search

Fractal

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage - Btree Avg CPU Usage - Fractal

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 32

increased. CPU usage is going high since we are dealing with complexity in the implementation. We will

address the resolution of this issue in future work.

Graph 49: ETCD BTree Vs Fractal Tree-Complexities

Graph 49 shows the comparison of complexities between BTree and Fractal Tree implementation. Fractal

Tree implementation complexities are going little bit high compared to BTree Implementation. This is

acceptable since we are increasing the complexity in the architecture.

EVALUATION

The comparison of BTree implementation results with Fractal Tree implementation shows that later one

exihibits high performance. We have collected the stats for different sizes of the Data Store size. The Data

Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. For all these events the comparison of

the same parameters are have been observed. As per the analysis carried out so far in this states that avg

insertion time , abg deletion time, and search time are going down if u start using the implementation of the

Data Store (ETCD) using the Fractal Tree instead of BTree.

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node and

ten node clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all

worker nodes and tested the performance of ETCD operartions using the metrics collection code. We have

collected six samples on etcd operations like insetion , deletion , search . All these activities are performing

better in the Fractal Tree implementation compared to BTree implementation. Space complexity and time

complexity are also compared, since we are increasing the complexity in the architecture , space and time

complexity will it increased automatically. Along with this CPU usage also will get increased.

Future work includes working on the CPU usage to make it control while we are availing the facilities of the

Fractal Tree implementation of the ETCD.

REFERENCES

1. A Comprehensive Study of “etcd”—An Open-Source Distributed Key-Value Store with Relevant

Distributed Databases, April 2022,Emerging Technologies for Computing, Communication and Smart

Cities (pp.481-489),Husen Saifibhai Nalawala, Jaymin Shah, Smita Agrawal, Parita Oza.

2. Impact of etcd deployment on Kubernetes, Istio, and application performance,William Tärneberg,

Cristian Klein, Erik Elmroth, Maria Kihl, 07 August 2020.

3. Kuberenets in action by Marko Liksa , 2018.

4. Kubernetes Patterns, Ibryam , Hub

5. Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate enterprise

16
24

32
40

48

64

32

54.24

80

108

136.8

192

-10

40

90

140

190

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) space complexity O(nlogBn)

Time complexity O(nlogBn) Time complexity O(logBn)

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 33

systems, and scale applications in your enterprise by Scott Surovich and Marc Boorshtein, 2020.

6. Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

7. Learning Core DNS, Belamanic, Liu.

8. Core Kubernetes , Jay Vyas , Chris Love.

9. A Formal Model of the Kubernetes Container Framework. GianlucaTurin, AndreaBorgarelli,

SimoneDonetti, EinarBrochJohnsen, S.LizethTapiaTarifa, FerruccioDamiani

Researchreport496,June202

10. Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data Analysis,

IEEE Xplore, 13 February 2020.

11. On the Performance of etcd in Containerized Environments" by Luca Zanetti et al. (2020), IEEE

International Conference on Cloud Computing (CLOUD).

12. Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science Laboratory in

Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

13. Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and

Research , ISSN : 2319-7064.

14. Network Policies in Kubernetes: Performance Evaluation and Security Analysis, Gerald Budigiri;

Christoph Baumann; Jan Tobias Mühlberg; Eddy Truyen; Wouter Joosen, IEEE Xplore 28 July 2021.

15. Networking Analysis and Performance Comparison of Kubernetes CNI Plugins, 28 October 2020, pp

99–109, Ritik Kumar & Munesh Chandra Trivedi.

16. Assessing Container Network Interface Plugins: Functionality, Performance, and Scalability, Shixiong

Qi; Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 2020 , IEEEXplore.

17. Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges, International

Journal of Innovative Research in Engineering & Management, Indrani Vasireddy, G. Ramya, Prathima

Kandi

18. Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-zhong.

19. Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned, Leila

Abdollahi Vayghan Montreal, Mohamed Aymen Saied; Maria Toeroe; Ferhat Khendek, IEEE XPlore.

20. Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

21. Kubernetes Best Practices: Resource Requests and limits https://orielly.ly/8bKD5

22. Configure Default Memory Requests and Limits for a Namespace https://orielly.ly/ozlUi1

23. Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

24. Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José

Ángel Bañares, Unai Arronategui.

25. "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)

26. "An Empirical Study of etcd's Performance and Scalability" by Zhen Xiao et al. (2019) 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS).

27. Distributed Kubernetes Metrics Aggregation, 23 September 2022, pp 695–703, Mrinal Kothari, Parth

Rastogi, Utkarsh Srivastava, Akanksha Kochhar & Moolchand Sharma, Springer.

28. An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different

Data Usage Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology, Vol

8(4), 364–375, February 2015.

29. A Portable Load Balancer for Kubernetes Cluster, 28 January 2018, Kimitoshi Takahashi, Kento Aida,

Tomoya Tanjo, Jingtao SunAuthors Info & Claims.

30. "etcd: A Highly-Available, Distributed Key-Value Store" by Brandon Philips et al. (2014), Proceedings

of the 2014 ACM SIGOPS Symposium on Cloud Computing.

31. Predicting resource consumption of Kubernetes container systems using resource models, Gianluca

https://www.ijirmps.org/

Volume 12 Issue 1 @ January - February 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2401231497 Website: www.ijirmps.org Email: editor@ijirmps.org 34

Turin , Andrea Borgarelli , Simone Donetti , Ferruccio Damiani , Einar Broch Johnsen , S. Lizeth Tapia

Tarifa.

32. Performance Evaluation of etcd in Distributed Systems" by Jiahao Chen et al. (2020), 2020 IEEE

International Conference on Cloud Computing (CLOUD).

33. Rearchitecting Kubernetes for the Edge, Andrew Jeffery, Heidi Howard, Richard MortierAuthors Info &

Claims, 26 April 2021.

34. A Two-Tier Storage Interface for Low-Latency Kubernetes Deployments, Ionita, Teodor Alexandru,

2022-05-11.

35. Scalable Data Plane Caching for Kubernetes, Stefanos Sagkriotis; Dimitrios Pezaros, 2022, IEEE

Xplore.

36. High Availability Storage Server with Kubernetes, Ali Akbar Khatami; Yudha Purwanto; Muhammad

Faris Ruriawan, 2020, IEEE Xplore.

37. Management of Life Cycle of Computing Agents with Non-deterministic Lifetime in a Kubernetes

Cluster, Mykola Alieksieiev; Volodymyr Smahliuk, 2023 , IEEE Xplore.

38. SECURITY IN THE KUBERNETES PLATFORM: SECURITY CONSIDERATIONS AND

ANALYSIS, Ghadir Darwesh, Jafar Hammoud, Alisa Andreevna VOROBYOVA, 2022.

39. Security Challenges and Solutions in Kubernetes Container Orchestration, Oluebube Princess Egbuna,

2022.

40. The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for Air

Quality Monitoring Application, Endah Kristiani, Chao-Tung Yang, Chin-Yin Huang, Yuan-Ting Wang

& Po-Cheng Ko , 16 July 2020.

https://www.ijirmps.org/

