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Abstract 

Etcd is a distributed key-value store that provides a reliable way to store and manage data in a distributed 

system. Here's an overview of etcd and its role in Kubernetes. Etcd ensures data consistency and durability 

across multiple nodes, provides distributed locking mechanisms to prevent concurrent modifications, 

facilitates leader election for distributed systems. Etcd uses a distributed consensus algorithm (Raft) to 

manage data replication and ensure consistency across nodes. Etcd nodes form a cluster, ensuring data 

availability and reliability. stores data as key-value pairs., provides watchers for real-time updates on key 

changes, supports leases for distributed locking and resource management, Etcd serves as the primary data 

store for Kubernetes, responsible for storing and managing Cluster state i.e,  Node information, pod status, 

and replication controller data, Configuration data like  Persistent volume claims, secrets, and config maps, 

Network policies i.e, Network policies and rules, High availability that ensures data consistency and 

availability across nodes, Distributed locking i.e, Prevents concurrent modifications and ensures data 

integrity. Scalability Supports large-scale Kubernetes clusters. When ever we are sending apply command 

using kubectl or any other client API Server authenticates the request, authorizes the same, and updates to 

etcd on the new configuration. Etcd receives the updates (API Server sends the updated configuration to 

etcd), then etcd writes the updated configuration to its key-value store. Etcd replicates the updated data 

across its nodes and it ensures data consistency across all the nodes.  We can say that ETCD is the main 

storage of the cluster. It carries the cluster state by storing the latest state at key value store. In this paper we 

will discuss about implementation of ETCD using BTree and Factal Tree. Factal tree outperforms BTree in 

some scenarios. We will work on to prove that Factal Tree implementation provides better performance than 

BTree. 

 

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service, IP-
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INTRODUCTION 

Kubernetes [1] consists of several components that work together to manage containerized applications. 

Master Node: This controls the overall cluster, handling scheduling and task coordination.API Server [2] 

Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes work across 

the nodes based on workload requirements..Controller Manager: Ensures that the current state matches the 

desired state by managing the cluster’s control loops. Etcd [3] is an open-source, distributed key-value store 

that provides a reliable way to store and manage data in a distributed system. It is designed to be highly 

available, fault-tolerant, and scalable. Features are Distributed architecture, Key-value store, Leader 

election, Distributed locking, Watchers for real-time updates, Leases for resource management , 

Authentication and authorization, Support for multiple storage backends (e.g., BoltDB, RocksDB) [4].  And 

the APIs are put to Store a key-value pair, get to retrieve a value by key, delete to remove a key-value pair, 
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watch to watch for changes to a key , and lease  to acquire a lease for resource management. Kube-proxy 

[5]: Manages network communication within and outside the cluster. Pod: The smallest deployable unit in 

Kubernetes, encapsulating one or more containers with shared storage and network resources. All containers 

in a pod run on the same node.Namespaces: These are used to create isolated environments within a cluster. 

They allow teams to share the same cluster resources without conflicting with each other. Deployment: A 

higher-level abstraction that manages the creation and scaling of Pods. It also allows for updates, rollbacks, 

and scaling of applications. Designed to manage stateful applications, where each Pod has a unique identity 

and persistent storage, such as databases. DaemonSet [6] Ensures that a copy of a Pod is running on all (or 

some) nodes. This is useful for deploying system services like log collectors or monitoring agents.Job: A 

Kubernetes resource that runs a task until completion. Unlike Deployments or Pods, a Job does not need to 

run indefinitely.CronJob: Runs Jobs at specified intervals, similar to cron jobs in Linux.  

 

LITERATURE REVIEW 

Kubernetes Cluster 

A cluster refers to the set of machines (physical or virtual) that work together to run containerized 

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it 

provides a platform for deploying, managing, and scaling containerized workloads. 

 

 
Fig: 1 

 

Fig 1. Shows the Kubernetes cluster architecture. This shows three worker nodes and one control plane. 

Control plane is having four components API Server , Scheduler , Controller and ECTD.  Pods are deployed 

to nodes using scheduler. Client kubectl  will connect to API server (part of Master Node) to interact with 

Kubernetes resources like pods, services, deployment etc. Client will be authenticated through API server 

having different stages like authentication and authorization. Once the client is succeeded though 

authentication and authorization (RBAC plugin) it will connect with corresponding resources to proceed 

with further operations. Etcd is the storage location for all the kubernetes resources. Scheduler will select 

the appropriate node for scheduling [7] the pods unless you have mentioned node affinity (this is the 

provision to specify the particular node for accommodating the pod). Kubelet is the process which is 

running on all nodes of the kubernetes cluster and it will manage the mediation between api server and 

corresponding node. Communication between any entity with master node is going to happen only through 

api server. 

 

Key Components of a Kubernetes Cluster: 

Control Plane (Master Node): 

API Server: Exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications, 

scaling, etc.) go through the API server. 
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etcd: A distributed key-value [8] store that holds the state and configuration of the cluster, including 

information about pods, services, secrets, and configurations. 

Controller Manager: Ensures that the cluster's desired state   matches its actual state, by managing different 

controllers (like deployment, replication, etc.). 

Scheduler [9]: Assigns workloads to worker nodes based on resource availability, scheduling policies, and 

requirements. 

Worker Nodes: 

Kubelet: The agent running on each node that ensures containers are running in Pods as specified by the 

control plane. 

Container Runtime [10]: The software responsible for running containers (e.g., Docker, containerd). 

Kube-proxy: Manages network [11] traffic between pods and services, handling routing, load balancing, and 

network rules. 

 

How a Kubernetes Cluster Works: 

Pods: The smallest deployable units in Kubernetes, consisting of one or more containers. They run on 

worker nodes and are managed by the control plane. 

Nodes: Physical or virtual machines in the cluster that host Pods and execute application workloads. 

Services: Provide stable networking and load balancing for Pods within a cluster. 

 

Cluster Operations: 

Scaling [12][22] Kubernetes clusters can automatically scale up or down by adding/removing nodes or pods. 

Resilience: Clusters are designed for high availability and can automatically restart failed pods or reschedule 

them on healthy nodes. 

Load Balancing: Kubernetes ensures traffic is evenly distributed across Pods within a Service. 

Self-Healing: The control plane continuously monitors the state of the cluster and acts to correct failures or 

discrepancies between the desired and current state. 

Service Abstraction [13][32] in Kubernetes provides a way to define a logical set of Pods and a policy by 

which to access them. This abstraction enables communication between different application components 

without needing to know the underlying details of each component's location or state. 

Stable Network Identity: Services provide a stable IP address and DNS name that can be used to reach Pods, 

which may be dynamically created or destroyed. 

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a load 

balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods. 

Service Types: Kubernetes supports different types of services: 

ClusterIP [14][23][24] The default type, which exposes the service on a cluster-internal IP. Only accessible 

from within the cluster. 

NodePort: Exposes the service on each Node’s IP at a static port (the NodePort). This way, the service can 

be accessed externally. 

LoadBalancer: Automatically provisions a load balancer for the service when running on cloud providers. 

ExternalName: Maps the service to the contents of the externalName field (e.g., an external DNS name). 

 

Iptables Coordination: 

Iptables  [15][39][40]is a user-space utility program that allows a system administrator to configure the IP 

packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to manage the 

networking rules that govern how traffic is routed to the various services. 
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Fig 2: ETCD Architecture 

 

Key Functions: 

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined service 

configurations. 

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP 

addresses of packets as they pass through, which is crucial for services that need to expose Pods to external 

traffic. 

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent back to 

the correct Pod. 

 

Service and IP Table: 

Service Request: A request is sent to the service's stable IP address. 

Kubernetes Networking [16][35][36]: Kubernetes uses iptables to manage the routing of this request. It sets 

up rules to map the service IP to the IP addresses of the underlying Pods. 

Load Balancing: Iptables distributes incoming traffic among the Pods that match the service's selector, 

ensuring load balancing. 

Return Traffic [17][37][38] When a Pod responds, iptables ensures that the response goes back through the 

same network path, maintaining connection tracking. 

  Service abstraction in Kubernetes provides a simplified and stable interface for accessing application 

components, while iptables [18][33][34] coordination ensures that the network traffic is efficiently routed to 

the right Pods. Together, they form a robust networking framework that is fundamental to the operation of 

Kubernetes clusters. Three node , four node , five node , six node , seven node , eight node , nine node and 

ten node clusters have been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 

GB and 350 GB for all worker nodes. The existing IP table has been implemented with Trie tree 

implementation. A Trie Tree, also known as a Prefix Tree, is a specialized tree data structure used to store 

associative data structures, often to represent strings. The key characteristic of a Trie is that all descendants 

of a node share a common prefix of the string associated with that node. This structure is particularly useful 

for tasks that involve searching for prefixes, such as auto complete systems, dictionaries, and IP routing 

tables. 
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The above code shows the implementation of the ETCD using BTree. Once we are done with this we need 

to findout the stats for the different parameters.  Imported couple of packages , followed by created the 

structure Etcd having the fields BTreeNode [19][25][26] , WAL.  These two are pointers and pointing to 

tree and wal respectively.  We have defined put and get operations including delete operation.  

Once we have implemented ETVD using BTree , have created test code to interact with ETCD so that we 

can get the stats of the different parameters. This will provide insertion time , deletion time , search time and 

complexity [20][27][28][29]. We have calculated the stats for different sizes of the ETCD data store. 
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Store 

Size 

(GB) 

Avg 

Insertion 

Time (µs) 

Avg 

Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 100 90 70 40 O(n) O(log n) 

24GB 120 100 80 42 O(n) O(log n) 

32GB 140 110 90 45 O(n) O(log n) 

40GB 160 130 100 47 O(n) O(log n) 

48GB 180 150 110 50 O(n) O(log n) 

64GB 200 170 130 55 O(n) O(log n) 

Table 1: ETCD  Parameters : BTree-1 

 

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have collected 

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the 

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n) 

and time complexity is O(logn), n represents the number of entries at the data store. 

 
Graph 1: ETCD Parameters : BTree- 1 

Graph 1 shows the different parameters except cpu usage since it is carrying % as units. 

 

 
Graph 2: ETCD – CPU Usage-1 

Graph 2 shows the CPU usage of the ETCD data store having the BTree implementation. 
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Store 

Size 

space complexity 

O(n) 

Time complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 2: ETCD BTree Complexity-1 

 

Table 2 carries the values for Space and Time complexity for BTree implementation of key value store for 

first sample. 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. 

 
Graph 3: ETCD  BTree  Complexity-1 
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Time (µs) 

Avg 

Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage (%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 105 95 75 38 O(n) O(logn) 

24GB 125 105 85 40 O(n) O(logn) 

32GB 145 115 95 43 O(n) O(logn) 

40GB 165 135 105 46 O(n) O(logn) 

48GB 185 155 115 48 O(n) O(logn) 

64GB 205 175 135 52 O(n) O(logn) 

Table 3: ETCD  Parameters : BTree-2 

 

As shown in the Table 2, We have collected for different sizes of the ETCD data store. We have collected 

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the 

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n) 

and time complexity is O(logn), n represents the number of entries at the data store. 
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Graph 4: ETCD Parameters : BTree- 2 

 

 
Graph 5: ETCD – CPU Usage-2 

Graph 4 shows the different parameters of the ETCD BTree implementation. Graph 5 shows the CPU usage. 

Table 2 , Graph4 and 5 are having the data from second sample. 

 

Store Size space complexity O(n) Time complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 4: ETCD BTree Complexity-2 

Table 4 carries the values for Space and Time complexity for BTree implementation of key value store for 

second sample. 

 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table 
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Graph 6: ETCD BTree Complexity-2 
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Search 

Time (µs) 

Avg CPU 

Usage (%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 110 100 80 37 O(n) O(logn) 

24GB 130 110 90 39 O(n) O(logn) 

32GB 150 120 100 42 O(n) O(logn) 

40GB 170 140 110 45 O(n) O(logn) 

48GB 190 160 120 47 O(n) O(logn) 

64GB 210 180 140 51 O(n) O(logn) 

Table 5: ETCD  Parameters (BTree Implementation) 

 

We have collected third sample from the ETCD operation (which was implemented using BTree data 

structure). Table 3 is having the parameters are avg insertion time, deletion time, avg search time, cpu usage 

, space and time complexity. As usual , the values are going high while increasing the size of the data store.  

 

 
Graph 7 : ETCD Parameters : BTree- 3 
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Graph 8: ETCD – CPU Usage-3 

 

Graph 7 and 8 shows the data from the Table 3. Since the CPU usage is in % units, we have created 

different graph. 

 

Store 

Size 

space complexity 

O(n) 

Time complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 6: ETCD BTree Complexity-3 

 

Table 6 carries the values for Space and Time complexity for BTree implementation of key value store for 

third sample. 

 

 
Graph 9: ETCD BTree Complexity-3 
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O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table 
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Store Size 

(GB) 

Avg 

Insertion 

Time (µs) 

Avg 

Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time 

Complexity 

(Insertion, 

Deletion, 

Search) 

16GB 115 105 85 37 O(n) O(logn) 

24GB 135 120 95 41 O(n) O(logn) 

32GB 155 130 105 44 O(n) O(logn) 

40GB 175 150 115 46 O(n) O(logn) 

48GB 195 170 125 49 O(n) O(logn) 

64GB 215 190 140 53 O(n) O(logn) 

Table 7: ETCD  Parameters (BTree Implementation) 

 

Table 4, shows the fourth sample of the data from ETCD store.  ETCD Stores a key-value pair in etcd,  

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!" 

- API: client.Put(ctx, key, value, opts)  This is the put operation of ETCD. ctx represents the context for the 

Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using 

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the 

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to 

create hierarchical namespaces. 

 

 
Graph 10 : ETCD Parameters : BTree- 4 

 

 
Graph 11: ETCD – CPU Usage-4 

Logarithmic Graph 

Graph 10 shows the avg insertion time, deletion time , search time and Graph 11 shows CPU usage from the 

fourth sample. 
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Store Size space complexity O(n) Time complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 8: ETCD BTree Complexity-4 

Table 8 carries the values for Space and Time complexity for BTree implementation of key value store for 

fourth sample. 

 

 
Graph 12: ETCD – Complexity-4 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. 
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(%) 
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Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 120 110 90 38 O(n) O(logn) 

24GB 140 130 100 42 O(n) O(logn) 

32GB 160 140 110 45 O(n) O(logn) 

40GB 180 160 120 48 O(n) O(logn) 

48GB 200 180 130 51 O(n) O(logn) 

64GB 220 200 150 55 O(n) O(logn) 

Table 9: ETCD  Parameters (BTree Implementation) 

 

Table 9 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time, search 

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity.  Space complexity is 

uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is also same 

irrespective of the size of the store.  ETCD GET operation retrieves a value from the store and the syntax , 

etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the context for the Get 

operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using 

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the 

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to 

create hierarchical namespaces. 
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Graph 13 : ETCD Parameters : BTree- 5 

 

 
Graph 14: ETCD – CPU Usage-5 

Graph 13 shows the avg insertion time, deletion time , search time and Graph 14 shows CPU usage from the 

fifth sample. 
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Time complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 10: ETCD BTree Complexity-5 

Table 10 carries the values for Space and Time complexity for BTree implementation of key value store for 

fifth sample 

 
Graph 15: ETCD – Complexity-5 
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Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. 
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Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage (%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 125 115 95 39 O(n) O(logn) 

24GB 145 135 105 43 O(n) O(logn) 

32GB 165 145 115 46 O(n) O(logn) 

40GB 185 165 125 50 O(n) O(logn) 

48GB 205 185 135 53 O(n) O(logn) 

64GB 225 205 155 57 O(n) O(logn) 

Table 11: ETCD  Parameters (BTree Implementation) 

 

Delete operation removes the entry from the data store (value is key value pair ), Removes a key-value pair 

from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts provides 

additional options for the Get operation. And the options include WithRange: Retrieves a range of keys, 

WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a given prefix, 

WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 6 shows the all 

parameters from the sixth sample.  

 

 
Graph 16 : ETCD Parameters : BTree- 6 

 

 
Graph 17: ETCD – CPU Usage-6 
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Graph 16 and 17 shows the parameters from the sixth sample.  Avg Insertion time, deletion time, avg search 

time shows in micro seconds where as CPU usage is in %. As usual the values are going high while 

increasing the size of the data store. Space complexity is same O(n) for all the sizes of the data store. Time 

complexity is O(logn) irrespective of the datastore, n represents the number of entries at the data store. 

 

Store 

Size 

space complexity 

O(n) 

Time complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 12: ETCD BTree Complexity-6 

Table 12 carries the values for Space and Time complexity for BTree implementation of key value store for 

sixth sample. 

 

 
Graph 18: ETCD – Complexity-6 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. 

 

PROPOSAL METHOD 

Problem Statement 

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes.  We 

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state at 

key value store. Implementation of the ETCD using the BTree data structure is having performance issue. 

We will address these issues slowness by using another data structure. 

 

Proposal 

A Fractal Tree [21][30] is a data structure that combines the benefits of trees and fractals to efficiently store 

and retrieve data. It's a self-similar tree structure, meaning that each subtree is a smaller version of the larger 

tree. Features of Fractal  tree is Self-similarity, each node has a similar structure to the entire tree, Subtrees 

are smaller versions of the larger tree, Balanced: Trees are approximately balanced to ensure efficient 

search,  Variable branching factor i.e, each node can have a different number of children. Using Fractal we 

will implement the Data Store ETCD , and will perform all these operations like insrertion [22][31] of the 
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key, deletion of the key, search time, CPU usage and space , time complexities.  

 

IMPLEMENTATION 

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have 

been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 GB for all 

worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB data store 

capacities (ETCD store capacities). We will test the different operations performances using Fractal tree 

implementation of the key value store and compare with the previous results which we had so far in the 

literature survey. 
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The following code shows the numerical stats collection. 
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The above code shows the implementation of the ETCD using Fractal Tree. Once we are done with this we 

need to findout the stats for the different parameters.  Imported couple of packages , followed by created the 

structure Etcd having the fields Fractal Tree, WAL.  These two are pointers and pointing to tree and wal 

respectively.  We have defined put and get operations including delete operation.  

Once we have implemented ETVD using BTree , have created test code to interact with ETCD so that we 

can get the stats of the different parameters. This will provide insertion time , deletion time , search time and 

complexity. We have calculated the stats for different sizes of the ETCD data store. 

 

Store 

Size 

(GB) 

Avg 

Insertion 

Time (µs) 

Avg 

Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 70 60 50 45 O(n⋅logBn) O(logBn) 

24GB 75 65 55 47 O(n⋅logBn) O(logBn) 

32GB 80 70 60 49 O(n⋅logBn) O(logBn) 

40GB 90 75 65 50 O(n⋅logBn) O(logBn) 

48GB 100 80 70 52 O(n⋅logBn) O(logBn) 

64GB 110 90 80 55 O(n⋅logBn) O(logBn) 

Table 13: ETCD  Parameters (Fractal Tree Implementation) 
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As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have collected 

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the 

values are getting increased while the size of the ETCD data store is growing up. Space complexity is 

O(nlogBn) and time complexity is O(logBn), n represents the number of entries at the data store. 

 

 
Graph 19: ETCD Parameters : Fractal Tree- 1 

Graph 19 shows the different parameters of the Fractal implementation of the  data store.  

 

 
Graph 20: ETCD – CPU Usage-1 

 

Graph 20 shows the CPU usage of the ETCD data store having the Fractal implementation. 

The branching factor B is the average number of children each node has in a multi-way tree structure, like a 

B-tree or Fractal Tree. It essentially represents how "wide" the tree is at each level. O(nlogBn): Often 

describes operations on entire datasets, where nnn is the number of elements, and B is the branching factor. 
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This complexity appears in cases where we need to perform multiple operations across all elements, each 

involving a logarithmic traversal based on the branching factor. O(logBn): Applies to individual operations 

(like insertion, search, or deletion), as the height of the tree is proportional to logBn. Since the tree is B-way, 

each level of traversal splits into B branches, reducing the number of levels required as B increases. 

Let's assume a uniform branching factor (B) of 4 for both B-Tree and Fractal Tree. 

 Fractal Tree with B=4 

- O(search): O(log_B n) = O(log_4 n) 

- O(insert): O(log_B n) = O(log_4 n) 

- O(delete): O(log_B n) = O(log_4 n) 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 14: ETCD Fractal Tree Complexity-1 

Table 14 carries the values for Space and Time complexity for Fractal Tree implementation of key value 

store for first sample. 

 

 

 
Graph 21: ETCD – Complexity-1 

Please find the Logarithmic graph using the calculation with branch as 4 , O(nlogBn) and O(logBn)  for the 

n values as  16, 24, 32, 40, 48 and 64 . 
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Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 75 65 55 42 O(n⋅logBn) O(logBn) 

24GB 80 70 60 44 O(n⋅logBn) O(logBn) 

32GB 85 75 65 46 O(n⋅logBn) O(logBn) 

40GB 95 80 70 48 O(n⋅logBn) O(logBn) 
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48GB 105 90 75 50 O(n⋅logBn) O(logBn) 

64GB 115 100 85 53 O(n⋅logBn) O(logBn) 

Table 15: ETCD  Parameters (Fractal Tree Implementation) 

 

As shown in the Table 2, We have collected for different sizes of the ETCD data store. We have collected 

the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As usual , the 

values are getting increased while the size of the ETCD data store is growing up. Space complexity is O(n) 

and time complexity is O(logn), n represents the number of entries at the data store. 

 

 
Graph 22: ETCD Parameters : Fractal Tree- 2 

 

 
Graph 23: ETCD – CPU Usage-2 

Higher branching factor B results in shorter tree heights, reducing time complexity for search and insert 

operations. However, increasing B also increases the number of children each node must handle, potentially 

impacting cache efficiency and other factors. 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 16: ETCD Fractal Tree Complexity-2 

Table 16 carries the values for Space and Time complexity for Fractal Tree implementation of key value 

store for second sample. 

0

20

40

60

80

100

16GB 24GB 32GB 40GB 48GB 64GB

Avg Insertion Time (µs) Avg Deletion Time (µs) Avg Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

https://www.ijirmps.org/


Volume 12 Issue 1                   @ January - February 2024 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2401231497          Website: www.ijirmps.org Email: editor@ijirmps.org 22 

 

 

 
Graph 24: ETCD – Complexity-2 

Please find the Logarithmic graph at Graph 24 using the calculation with branch as 4 , O(nlogBn) and 

O(logBn)  for the n values as  16, 24, 32, 40, 48 and 64 . 

 

.Store 

Size 

(GB) 

Avg 

Insertion 

Time (µs) 

Avg 

Deletion 

Time (µs) 

Avg 

Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 80 70 60 43 O(n⋅logBn) O(logBn) 

24GB 85 75 65 45 O(n⋅logBn) O(logBn) 

32GB 90 80 70 47 O(n⋅logBn) O(logBn) 

40GB 100 85 75 49 O(n⋅logBn) O(logBn) 

48GB 110 95 80 51 O(n⋅logBn) O(logBn) 

64GB 120 105 90 54 O(n⋅logBn) O(logBn) 

Table 17 : ETCD  Parameters (Fractal Tree Implementation) 

 

Table 4, shows the fourth sample of the data from ETCD store.  ETCD Stores a key-value pair in etcd,  

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!" 

- API: client.Put(ctx, key, value, opts)  This is the put operation of ETCD. ctx represents the context for the 

Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using 

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the 

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to 

create hierarchical namespaces. 

 

 
Graph 25: ETCD Parameters : Fractal Tree- 3 
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Graph 26: ETCD – CPU Usage-3 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 18: ETCD Fractal Tree Complexity-3 

Table 18 carries the values for Space and Time complexity for Fractal Tree implementation of key value 

store for third sample. 

 

 
Graph 27: ETCD – Complexity-3 

Please find the Logarithmic graph at Graph 27 using the calculation with branch as 4 , O(nlogBn) and 

O(logBn)  for the n values as  16, 24, 32, 40, 48 and 64 . 
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16GB 85 75 65 44 O(n⋅logBn) O(logBn) 

24GB 90 80 70 46 O(n⋅logBn) O(logBn) 

32GB 95 85 75 48 O(n⋅logBn) O(logBn) 

40GB 105 95 80 51 O(n⋅logBn) O(logBn) 
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48GB 115 105 85 54 O(n⋅logBn) O(logBn) 

64GB 125 115 95 57 O(n⋅logBn) O(logBn) 

Table 19: ETCD  Parameters (Fractal Tree Implementation) 

 

Table 5 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time, search 

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity.  Space complexity is 

uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is also same 

irrespective of the size of the store.  ETCD GET operation retrieves a value from the store and the syntax , 

etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the context for the Get 

operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created using 

context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key specifies the 

key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to 

create hierarchical namespaces 

 
Graph 28: ETCD Parameters : Fractal Tree- 4 

 

 
Graph 29: ETCD – CPU Usage-4 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 20: ETCD Fractal Tree Complexity-4 

Table 20 carries the values for Space and Time complexity for Fractal Tree implementation of key value 
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store for fourth sample. 

 

 
Graph 30: ETCD – Complexity-4 

Please find the Logarithmic graph at Graph 27 using the calculation with branch as 4 , O(nlogBn) and 

O(logBn)  for the n values as  16, 24, 32, 40, 48 and 64 . 
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Search 

Time (µs) 

Avg CPU 

Usage 

(%) 

Space 

Complexity 

Time Complexity 

(Insertion, Deletion, 

Search) 

16GB 90 80 70 45 O(n⋅logBn) O(logBn) 

24GB 95 85 75 47 O(n⋅logBn) O(logBn) 

32GB 100 90 80 49 O(n⋅logBn) O(logBn) 

40GB 110 100 85 52 O(n⋅logBn) O(logBn) 

48GB 120 110 90 55 O(n⋅logBn) O(logBn) 

64GB 130 120 100 58 O(n⋅logBn) O(logBn) 

Table 21: ETCD  Parameters (Fractal Tree Implementation) 

 

Delete operation removes the entry from the data store (value is key value pair ), Removes a key-value pair 

from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts provides 

additional options for the Get operation. And the options include WithRange: Retrieves a range of keys, 

WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a given prefix, 

WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 6 shows the all 

parameters from the sixth sample.  

 

 
Graph 31: ETCD Parameters : Fractal Tree- 5 
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Graph 32: ETCD – CPU Usage-5 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 22: ETCD Fractal Tree Complexity-5 

Table 22 carries the values for Space and Time complexity for Fractal Tree implementation of key value 

store for fifth sample. 

 

 
Graph 33: ETCD – Complexity-5 

Please find the Logarithmic graph at Graph 33 using the calculation with branch as 4 , O(nlogBn) and 

O(logBn)  for the n values as  16, 24, 32, 40, 48 and 64 . 
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16GB 95 85 75 46 O(n⋅logBn) O(logBn) 

24GB 100 90 80 48 O(n⋅logBn) O(logBn) 

32GB 105 95 85 50 O(n⋅logBn) O(logBn) 

40GB 115 105 90 53 O(n⋅logBn) O(logBn) 

48GB 125 115 95 56 O(n⋅logBn) O(logBn) 

64GB 135 125 105 59 O(n⋅logBn) O(logBn) 

Table 23: ETCD  Parameters (Fractal Tree Implementation) 
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Graph 34: ETCD Parameters : Fractal Tree- 6 

 

 
Graph 35: ETCD – CPU Usage-6 

 

Store Size  space complexity O(nlogBn) Time complexity O(logBn) 

16GB 32 2 

24GB 54.24 2.26 

32GB 80 2.5 

40GB 108 2.7 

48GB 136.8 2.85 

64GB 192 3 

Table 24: ETCD Fractal Tree Complexity-6 

Table 24 carries the values for Space and Time complexity for Fractal Tree implementation of key value 

store for sixth sample. 

 

 
Graph 36: ETCD – Complexity-6 

Please find the Logarithmic graph at Graph 36 using the calculation with branch as 4 , O(nlogBn) and 
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O(logBn)  for the n values as  16, 24, 32, 40, 48 and 64 . 

 

 
Graph 37: ETCD BTree Vs Fractal Tree-1.1 

Graph 37, shows the Avg Insertion time difference between BTree and Fractal Tree implementation. As per 

the graph the time trend is going  down as move from BTree to Fractal Tree implementation. The same 

observation we can have with other parameters like avg deletion time and avg search time. 

 

 
Graph 38: ETCD BTree Vs Fractal Tree-1.2 

Graph 38 shows the CPU usage difference between BTRee implementation and Fractal Tree 

implementation. CPU usage is going high since we are dealing with complexity in the implementation. We 

will address the resolution of this issue in future work. 

 

 
Graph 39: ETCD BTree Vs Fractal Tree-2.1 

Graph 39, is the comparison between BTree and Fractal Tree implementation of the key value store 

(ETCD). The graph shows the Avg Insertion time difference between BTree and Fractal Tree 

implementation. As per the graph the time trend is going  down as move from BTree to Fractal Tree 

implementation. The same observation we can have with other parameters like avg deletion time and avg 
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search time. 

 

 
Graph 40: ETCD BTree Vs Fractal Tree-2.2 

Graph 40 shows the CPU usage difference between BTRee implementation and Fractal Tree 

implementation. Since qwe are using branching strategy in the Tree data structure, CPU usage will be 

increased. CPU usage is going high since we are dealing with complexity in the implementation. We will 

address the resolution of this issue in future work. 

 

 
Graph 41: ETCD BTree Vs Fractal Tree-3.1 

Graph 41, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD) 

for the third sample. The graph shows the Avg Insertion time difference between BTree and Fractal Tree 

implementation. As per the graph the time trend is going  down as move from BTree to Fractal Tree 

implementation. The same observation we can have with other parameters like avg deletion time and avg 

search time. 

 

 
Graph 42: ETCD BTree Vs Fractal Tree-3.2 
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Graph 43: ETCD BTree Vs Fractal Tree-4.1 

Graph 43, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD) 

for the fourth sample. Since we are using the branching strategy , the avg of all the parameters are going 

down. The graph shows the Avg Insertion time difference between BTree and Fractal Tree implementation. 

As per the graph the time trend is going  down as move from BTree to Fractal Tree implementation. The 

same observation we can have with other parameters like avg deletion time and avg search time. 

 

 
Graph 44: ETCD BTree Vs Fractal Tree-4.2 

Graph 44 shows the CPU usage difference between BTRee implementation and Fractal Tree 

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be 

increased. CPU usage is going high since we are dealing with complexity in the implementation. We will 

address the resolution of this issue in future work. 

 

 
Graph 45: ETCD BTree Vs Fractal Tree-5.1 

Graph 45, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD) 

for the third fifth. The graph shows the Avg Insertion time difference between BTree and Fractal Tree 

implementation. As per the graph the time trend is going  down as move from BTree to Fractal Tree 
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implementation. The same observation we can have with other parameters like avg deletion time and avg 

search time. 

 

 
Graph 46: ETCD BTree Vs Fractal Tree-5.2 

Graph 46 shows the CPU usage difference between BTRee implementation and Fractal Tree 

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be 

increased. CPU usage is going high since we are dealing with complexity in the implementation.  

 

 
Graph 47: ETCD BTree Vs Fractal Tree-6.1 

Graph 47, is the comparison between BTree and Fractal Tree implementation of the key value store (ETCD) 

for the sixth sample. The graph shows the Avg Insertion time difference between BTree and Fractal Tree 

implementation. As per the graph the time trend is going  down as move from BTree to Fractal Tree 

implementation. The same observation we can have with other parameters like avg deletion time and avg 

search time. 

 

 
Graph 48: ETCD BTree Vs Fractal Tree-6.2 

Graph 48 shows the CPU usage difference between BTRee implementation and Fractal Tree 

implementation. Since we are using branching strategy in the Tree data structure, CPU usage will be 
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increased. CPU usage is going high since we are dealing with complexity in the implementation. We will 

address the resolution of this issue in future work. 

 

 
Graph 49: ETCD BTree Vs Fractal Tree-Complexities 

Graph 49 shows the comparison of complexities between BTree and Fractal Tree implementation. Fractal 

Tree implementation complexities are going little bit high compared to BTree Implementation. This is 

acceptable since we are increasing the complexity in the architecture.  

 

EVALUATION 

The comparison of BTree  implementation results with Fractal Tree implementation shows that later one 

exihibits high performance. We have collected the stats for different sizes of the Data Store size. The Data 

Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. For all these events the comparison of 

the same parameters are have been observed. As per the analysis carried out so far in this states that avg 

insertion time , abg deletion time, and search time are going down if u start using the implementation of the 

Data Store (ETCD) using the Fractal Tree instead of BTree. 

 

CONCLUSION 

We have configured  three node , four node , five node , six node , seven node , eight node , nine node and 

ten node clusters with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 GB for all 

worker nodes and tested the performance of ETCD operartions using the metrics  collection code.  We have 

collected six samples on etcd operations   like insetion , deletion , search . All these activities are performing 

better in the Fractal Tree implementation compared to BTree implementation. Space complexity and time 

complexity are also compared, since we are increasing the complexity in the architecture , space and time 

complexity will it increased automatically. Along with this CPU usage also will get increased.  

Future work includes working on the CPU usage to make it control while we are availing the facilities of the 

Fractal Tree implementation of the ETCD. 
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