Construction And Validation of College Teachers' Usage of Smartboards For Teaching

S. Karthikeyan¹, S. Kulasekara Perumal Pillai²

¹Ph.D., Research Scholar, Department of Education, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India. ²Professor and Dean, Faculty of Education, Annamalai University, Annamalai Nagar, Chidambaram, India.

Abstract: The present study was undertaken to construct and validated of College Teachers' usage of Smartboards for Teaching among College Teachers' in Ariyalur District, Tamil Nadu. Initially 83 items were framed by reviewing related literature, which is given to experts for analysing the content. Based on experts' opinion 20 items were deleted. After preliminary try out and item analysis only items with "t" value greater than 1.75 was selected. The end of analysis 4 items were eliminated. The final form of the scale thus consists of 56 items and it was found to be relatively high. Content validity and face validity was also ascertained.

Keywords: Validity, Reliability, Smartboards, Content Validity, Face Validity.

Introduction

Smartboards, also known as interactive whiteboards, have emerged as transformative tools in educational settings, revolutionizing traditional teaching methods. Smartboards represent a technological advancement that has significantly altered the landscape of education. The evolution of traditional chalkboards to interactive whiteboards has provided educators with a powerful tool for enhancing classroom dynamics. The inception of smartboard technology can be traced back to the 1990s when companies like SMART Technologies introduced the first interactive whiteboards. Initially, these devices were primarily used for presentations in corporate settings. However, as technology advanced, smartboards found their way into educational institutions. Early smartboards were characterized by touch-sensitive surfaces that allowed users to interact with digital content. Over the years, technological improvements have led to the integration of features such as multi-touch capability, gesture recognition, and compatibility with various software applications. These advancements have enhanced the versatility of smartboards in educational settings, enabling teachers to create interactive and dynamic lessons.

The construction and standardization of the College Teachers' usage of Smartboards for Teaching scale it involves the following steps are

- 1. Planning
- 2. Preparation
- 3. Try out
- 4. Item analysis
- 5. Final form of the test

Item Analysis

The next step in the validation of the usage of Smartboards for teaching Scale is to find out the 't' value for each item, which forms the basis for item selection in order to built up the final scale. The individual score for all the 100 college Teachers were ranked from the highest to the lowest scores. Then 27% of the subjects with the highest total scores and 27% of the lowest total scores were sorted out for the purpose of item selection.

Selection of Item

As per the procedure explained by Allen Edward (1957), the 't' value of each statement has been calculated. The statements with 't' value greater than or equal to 1.75 were selected and below 1.75 has been rejected for the final study. On the basis of calculation it is found that, all the statements have got 't' values greater than 1.75, hence, all the statements have got selected for the final study.

Table No. 1

Items analysis	- Independent	sample 't'	test for the	item selection
----------------	---------------	------------	--------------	----------------

Item No.	t-value	Selected/Not Selected	
1.	5.76	Selected	
2.	5.34	Selected	
3.	7.69	Selected	
4.	6.28	Selected	
5.	6.59	Selected	
6.	5.51	Selected	
7.	1.35	Not selected	
8.	2.4	Selected	
9.	8.23	Selected	
10.	7.42	Selected	
11.	3.02	Selected	
12.	6.77	Selected	
13.	7.09	Selected	
14.	7.76	Selected	
15.	6.19	Selected	
16.	5.85	Selected	
17.	6.81	Selected	
18.	3.50	Selected	
19.	8.20	Selected	
20.	7.73	Selected	
21.	8.96	Selected	
22.	4.60	Selected	
23.	6.34	Selected	
24.	6.04	Selected	
25.	3.93	Selected	
26.	2.64	Selected	
27.	5.03	Selected	
28.	8.19	Selected	

29.	5.95	Selected	
30.	2.93	Selected	
31.	5.45	Selected	
32.	4.95	Selected	
33.	6.66	Selected	
34.	6.73	Selected	
35.	8.86	Selected	
36.	8.04	Selected	
37.	4.18	Selected	
38.	3.33	Selected	
39.	6.66	Selected	
40.	6.42	Selected	
41.	5.46	Selected	
42.	4.76	Selected	
43.	5.87	Selected	
44.	5.08	Selected	
45.	7.88	Selected	
46.	7.96	Selected	
47.	6.58	Selected	
48.	2.33	Selected	
49.	6.06	Selected	
50.	8.12	Selected	
51.	6.34	Selected	
52.	1.08	Not selected	
53.	5.51	Selected	
54.	1.51	Not selected	
55.	6.77	Selected	
56.	6.54	Selected	
57.	5.93	Selected	
58.	5.11	Selected	
59.	7.19	Selected	
60.	1.19	Not selected	

56 statements with 't' values above 1.75 were selected for the final study.

Reliability & Validity

Reliability refers to the repeatability of findings. If the study were to be done a second time, if it yield the same results, then the instrument is considered to be reliable.

Validity refers to the credibility or believability of the research. For the purpose of establishing Reliability and Validity Index of Reliability and Index of Validity were worked out. Both the index of Reliability and Validity were subjected to 't' test separately. Its level of significance was fixed by employing the formula suggested by Allen Edwards (1969).

 $t = r \sqrt{n-2/1-r}$

Here r= reliability co-efficient and n= Number of sample t= test of significant.

Table No. 2

Index of Reliability Co - efficient

S.No.	Test	Number of sample	Index of Reliability	Level of significance
1.	Usage of Smartboards for teaching	100	0.84	0.01 Significance

Table No. 3

Index of validity co- efficient

S.No.	Test	Number of sample	Index of Validity	Level of significance
1.	Usage of Smartboards	100	0.91	0.01
	for teaching			Significance

Norms for the scores

The norms were established for the Usage of Smartboards for teaching Scale.

Table No. 4

Norms for College Teachers' Usage of Smartboards for teaching Scores

S. No	Scores	Interpretation
1.	Above 84	High level of usage of Smartboards for teaching
2.	Between 56-84	Moderate level of usage of Smartboards for teaching
3.	Below 56	Low level of usage of Smartboards for teaching

Conclusion

Based on the study conducted in Ariyalur District, Tamil Nadu, the construction and validation of a scale to assess college teachers' usage of smartboards for teaching was meticulously undertaken. Initially, 83 items were formulated from a thorough review of related literature, but after expert analysis, 20 items were discarded. Subsequent preliminary tryouts and item analyses led to the elimination of an additional four items, leaving a final scale consisting of 56 items. The scale was determined to be relatively high in reliability, with both content and face validity ascertained.

Smartboards have revolutionized educational settings by transforming traditional teaching methods into more interactive and dynamic experiences. Originating in the 1990s for corporate presentations, smartboards have since evolved with advancements such as multi-touch capabilities and gesture recognition, making them invaluable in educational environments.

The process of constructing and standardizing the scale for assessing college teachers' usage of smartboards involved several key steps: planning, preparation, tryout, item analysis, and the finalization of the test form. These rigorous steps ensured the creation of a reliable and valid tool that reflects the current use and potential of smartboards in enhancing teaching methodologies among college teachers in Ariyalur District. This scale not only aids in understanding the integration of smartboard technology in teaching but also serves as a foundation for further research and development in educational technology.

References

- 1. Dychkivska, I. M. (2013). Innovative pedagogical technologies: Workshop: textbook. Kyiv, Ukraine: Slovo.
- 2. National Council for the Accreditation of Teacher Education (NCATE) (2008), Professional standards for the accreditation of schools, colleges, and departments of education, Washington, DC: NCATE.
- Nwoke, Bright Ihechukwu and others (2024), The Role of Smart Technologies in the Development of Science Education in the 21st century, Global Journal of Artificial Intelligence and Technology Development, Vol 2 (2), April-June 2024pp 23-29.
- 4. Oigara, J N., and Keengwe, J. (2011), Pre-service teachers and technology integration with smart boards, Journal of Information Communication and Technology Education, Vol 7(4), pp 84-92.
- 5. Osuku Augustina and Otobo Dina (2024), Utilization of Smart Board Technology in Textile Design Instruction for Enhancement of Performance in Junior Secondary School in Central Senatorial District, Bayelsa State, British Journal of Multidisciplinary and Advanced Studies: Education, Learning, Training& Development, 5(1),pp57-72.
- 6. Raju, Baiju P,(2022), Impact of cognitive apprenticeship Model in Teaching Social Science on Selected Variables among Secondary School Students, Department of Education, Annamalai University, Chidambaram, India., pp 10-12.
- 7. Victoria, S and Andal, S (2022), High School students' Academic Achievement in Science and their Critical Thinking, Internal Journal of Research, Vol 9(02), p50-56.