
Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 1

In-Memory Database Architecture for High-Speed

Computing

Binoy Kurikaparambil Revi

Independent Researcher, USA

Email: binoyrevi@live.com

Abstract

The high-speed computing has transformed dramatically, largely driven by remarkable

advancements in graphics processing units (GPUs) and algorithms. With these technological strides,

there has been a parallel surge in the volume of data that must be efficiently managed during high-

speed computing operations. This increase in data complexity poses challenges, yet it is met with

innovative solutions. One of the most noteworthy developments is the rise of affordable, high-capacity

memory chips, which have fundamentally altered how data is managed in memory. As a result,

software architects are now empowered to design sophisticated high-speed computing architectures

that leverage various in-memory techniques. Among these techniques are in-memory databases,

which allow rapid data retrieval and manipulation along with publish-and-subscribe functionality,

which ensures that data is immediately accessible to applications as soon as it is generated. This

technology enables high-speed applications to operate seamlessly and efficiently, making real-time

data available and enhancing overall computational capability. Many industries and domains can

benefit from using in-memory database techniques to process large volumes of data. For example,

high-speed control systems in the power and automotive industries can take advantage of these

techniques. Fields such as artificial intelligence and data mining can also leverage in-memory

databases for improved performance.

Keywords: High-Speed Computing, Data Processing, In-Memory Database, Redis

Introduction:

In-memory databases were initially used mainly in web applications, primarily for managing user sessions

and caching small data sets for faster retrieval. These databases operated in the server's volatile memory,

enabling quick access times compared to traditional disk-based storage solutions. Over the years, significant

advancements in hardware technology have reduced the cost of Random Access Memory (RAM) while

improving its speed and capacity. As a result of these improvements, in-memory databases have expanded

beyond their original applications. They are now integrated into high-speed computing architectures to

support a broader range of scenarios, such as high-speed time-series data management, publish-and-

subscribe services, complex event processing, and large-scale data processing tasks. The ability to handle

larger datasets while maintaining high performance makes in-memory databases crucial in modern data-

intensive applications.

Related Work:

Abdullah Talha Kabakus and Resul Kara conducted performance evaluations of in-memory databases. They

compared the performance of various in-memory databases, such as Redis and H2, and traditional databases

like MongoDB and Apache Cassandra. The results of their experiments were quite interesting, as they

https://www.ijirmps.org/
mailto:binoyrevi@live.com

Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 2

indicated that not only does pure in-memory play a crucial role but the technologies and algorithms used to

build the database are also significant. Based on the evaluation by Abdullah Talha Kabakus and Resul Kara,

Redis emerged as the top performer, utilizing memory very efficiently.The figure 1 is sourced from the

evaluation by Abdullah Talha Kabakus and Resul Kara.

Database

Number of records

1,000 10,000 100,000 1,000,000

Redis 34 214 1666 14.638

MongoDB 904 3482 26.030 253.898

Memcached 23 100 276 2813

Cassandra 1202 4487 15.482 140.842

H2 147 475 1648 7394

Figure 1: The calculated time to write key-value pairs (ms)[1] from Abdullah Talha Kabakus and Resul

Kara conducted a performance evaluation of in-memory databases

In their insightful paper titled "In-memory Databases: Challenges and Opportunities From Software and

Hardware Perspectives," Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao, and

Hao Zhang thoroughly investigate the multifaceted challenges and promising opportunities that In-Memory

databases present. The authors emphasize the importance of approaching the topic from both software and

hardware angles, exploring innovative strategies that could mitigate existing limitations while enhancing

performance. Their comprehensive analysis leads to a significant conclusion: to fully harness the

capabilities of In-Memory databases, an integrated approach that combines advancements in both hardware

and software is extremely important. This assertion is further reinforced by the rigorous experiments

conducted by Abdullah Talha Kabakus and Resul Kara, which meticulously assess the performance metrics

of In-Memory databases, providing a deeper understanding of their operational efficiencies and potential

improvements.

Problem Description:

In the embedded systems and control systems industry, there are numerous use cases that require high-speed

data processing to achieve accurate control or the timely execution of tasks. Often, these data processing

tasks involve large amounts of data to perform precise computations. However, when memory is limited or

https://www.ijirmps.org/

Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 3

data is not well managed, applications tend to use only the minimum amount of data necessary for

computations. This represents the first problem that must be addressed. To address this critical issue, there is

a pressing need for advancements in data management techniques that optimize memory usage. By

improving how data is organized, stored, and accessed, it becomes possible to incorporate larger datasets

into the processing framework. This, in turn, enhances the granularity and accuracy of computations,

enabling systems to make better-informed decisions and operate more effectively. As a result, tackling the

challenges associated with data management is essential for advancing the capabilities of embedded and

control systems in handling complex tasks efficiently.

The second issue at hand is the capability to process vast volumes of data at rapid speeds. One common

approach to managing extensive datasets is through the implementation of databases. However,

conventional on-disk or hybrid databases often fall short when faced with the rigorous demands of high-

speed control systems or the substantial computational loads required in real-time embedded systems. While

these traditional database solutions might initially seem adequate to meet the performance needs, as the

volume of data necessary for executing essential functions continues to grow, the performance can diminish

significantly, leading to a system that may become increasingly unreliable. This challenge highlights the

urgent need for in-memory databases, which can provide the required speed and efficiency, along with

complementary technologies for persistent storage when necessary.

The third challenge examined in this analysis revolves around the methods employed for capturing data and

making it accessible to the core data processing engine. In numerous scenarios involving embedded systems

and control systems, there is a critical necessity for data to be available for data processing immediately

upon receipt by the system. This urgency is even more pronounced within control systems, where the output

generated by the control processing unit must be transmitted to the appropriate destination unit without any

delay or instantaneously. Consequently, it becomes imperative for embedded and control systems to

guarantee instantaneous access to data and timely delivery of outputs. Meeting these stringent requirements

is essential for the effective operation of these systems, highlighting the importance of reliable data capture

and swift communication pathways.

Handling data series, particularly time series data, poses significant challenges for real-time computations.

This is largely due to the continuous accumulation of data over time, each data point accompanied by its

corresponding timestamp. The intervals at which this data is collected can vary greatly, spanning from

minutes to milliseconds. When it comes to managing such vast amounts of data in a traditional on-disk

database, the task can quickly become overwhelming for data processing engines. The data processing unit

is most efficient when accessing information stored in memory as it is generated, thereby avoiding the

delays and complexities of on-disk or hybrid data operations.

In-Memory Database System Architecture:

The data management and data transfer techniques used in embedded systems or control systems are crucial

for their performance and robustness. Utilizing in-memory databases can be essential for achieving this.

However, it's important to consider the system configuration. The amount of memory required for the

system does not only depend on the tasks of the operating system but also on the volume of data that needs

to be stored and processed using the in-memory database.

Based on the research and performance evaluation conducted on various databases by Abdullah Talha

Kabakus and Resul Kara[1], it is clear that the Redis database performs exceptionally well. In my further

study of the Redis database, I found it fascinating to learn about the features and techniques it provides for

efficient data management and transaction handling, which significantly support high-speed computing.

Figure 2 depicts a reference architecture for a typical embedded or control system that collects data from

various sources, processes it, and sends the data to both internal and external systems. This architecture

https://www.ijirmps.org/

Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 4

includes modules for different standard communication protocols through the network, along with external

systems that function as publishers. Furthermore, the system distributes data to both external and internal

systems.

Figure 2: Architecture for a typical embedded or control system using Im-Memory Database

Let’s discuss various major components that are included in this architecture.

1. Application: This program serves as the data processing engine and can also be considered a

computing engine. It receives data from various sources, including different communication

protocols and applications. The data is processed through the In-Memory Interface Module, which

acts as an intelligent broker between the data sources and the applications.

2. In-Memory Interface Module: The In-Memory Interface Module is a crucial component of the

architecture, significantly impacting the overall performance of the system. It serves as a broker

between the application, the In-Memory database, data from network communication modules, and

other application sources. The intelligent design of this component is essential, as it determines how

incoming data is processed and how that data is made available to the application for further

processing. Critical design decisions must be made regarding how the In-Memory Interface module

will store data in the In-Memory database. This includes recognizing the data and, if necessary,

https://www.ijirmps.org/

Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 5

making it immediately available to applications. Additionally, handling data series, such as time

series data, and defining priority levels are essential considerations.

3. Communication Interface Modules: These modules implement communication protocols and operate

as processes within the system. They receive data from the network, decode it, and provide it to the

In-Memory Interface Module.

4. Other applications: This is optional and exists only if any other application, mainly third-party

applications, runs on the system that can be considered a data source.

5. In_memory Database: In this architecture, we are using Redis as the in-memory database. One of the

primary features of Redis is its ability to store data in key-value pairs. Additionally, the Redis Time

Series module allows Redis to store time series data in memory, making it an excellent option for

data processing applications. However, care must be taken to manage the data retention period to

control and optimize memory usage. Redis also provides publish and subscribe services[3], which

are valuable additions to its in-memory database capabilities. With these services, external

applications can subscribe to the Redis database and instantly receive any updates published by the

application or other publishers. It's important to note that the application itself acts as both a

publisher and a subscriber in this service[6]. This functionality is extremely useful for implementing

message passing and health monitoring requirements, serving as a critical data exchange mechanism.

6. Publishers: [3]The publishers are core applications or external services that can publish data to the

Redis database using named channels.

7. Subscribers: [3]The subscribers are core applications, external services or applications, UI, and other

data hubs that subscribe to the Redis Pub/Sub method to receive the published messages.

The internal data flow of the system is managed by the In-Memory Interface module, which alleviates the

workload from the application, allowing it to focus on core critical tasks.In-Memory Interface module is

also the best candidate to monitor the overall health of the system.

Conclusions:

The high-speed computing and data processing presents a variety of challenges, particularly when it comes

to effectively handling and managing vast amounts of data in real-time. As the volume of data expands,

traditional databases—whether on-disk or hybrid—can become significant bottlenecks, impairing overall

system performance. In contrast, in-memory databases and their associated modules serve as vital software

development tools, equipping developers with robust APIs to develop applications capable of high speed

data processing. By storing data in the system's memory rather than on traditional disk drives, these

databases facilitate rapid access to information, which is crucial for time-sensitive applications. Redis, an

advanced in-memory database includes publish and subscribe services. This feature allows data to be

disseminated to various applications and external services the moment it becomes available, enhancing

responsiveness and interactivity. Such capabilities are essential for building event-driven applications that

not only demand high performance but also adapt to real-time data changes.

References:

1. Abdullah Talha Kabakus, Resul Kara, A performance evaluation of in-memory databases, Journal of

King Saud University - Computer and Information Sciences, Volume 29, Issue 4, 2017, Pages 520-525,

ISSN 1319-1578, https://doi.org/10.1016/j.jksuci.2016.06.007.

2. Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao, and Hao Zhang. 2015. In-

memory Databases: Challenges and Opportunities From Software and Hardware Perspectives. SIGMOD

Rec. 44, 2 (June 2015), 35–40. https://doi.org/10.1145/2814710.2814717

3. Redis Publish-Subscribe Service : https://redis.io/glossary/pub-sub/

https://www.ijirmps.org/
https://doi.org/10.1016/j.jksuci.2016.06.007
https://doi.org/10.1145/2814710.2814717
https://redis.io/glossary/pub-sub/

Volume 12 Issue 4 @ July - August 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232200 Website: www.ijirmps.org Email: editor@ijirmps.org 6

4. Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013. Speedy

transactions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles (SOSP '13). Association for Computing Machinery, New York, NY,

USA, 18–32. https://doi.org/10.1145/2517349.2522713

5. Y. Wang et al., "The Performance Survey of in Memory Database," 2015 IEEE 21st International

Conference on Parallel and Distributed Systems (ICPADS), Melbourne, VIC, Australia, 2015, pp. 815-

820, doi: 10.1109/ICPADS.2015.109.

6. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many

faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003), 114–131.

https://doi.org/10.1145/857076.857078

7. M. Hungyo and M. Pandey, "SDN based implementation of publish/subscribe paradigm using

OpenFlow multicast," 2016 IEEE International Conference on Advanced Networks and

Telecommunications Systems (ANTS), Bangalore, India, 2016, pp. 1-6, doi:

10.1109/ANTS.2016.7947820.

keywords: {Switches;Delays;Protocols;Multicast communication;Servers;Routing;Clustering

algorithms;Pub/Sub;SDN;multicasting;OpenFlow;QoS;P2P;API;flow table;delay;throughput},

https://www.ijirmps.org/
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/857076.857078

