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Abstract
Bacteria colony counting is a critical process in microbiology research, but manual colony counting
remains tedious and error-prone, motivating the need for automation. This study aimed to develop an
automated system for accurately detecting and counting  E. coli colonies on agar plates. The research
objectives were achieved by generating a dataset of E. coli colony images, developing a hybrid image
segmentation algorithm, and training a YOLOv5 transfer learning model. The dataset was created by
capturing images of E. coli colonies on agar plates under controlled conditions. The cultured agar plates
were generated by Davao Oriental State University (DOrSU). A novel framework for a hybrid image
segmentation algorithm combining Watershed and Falling-Ball was developed to address the challenge
of accurately segmenting colonies from complex backgrounds. The algorithm utilized the output of the
Watershed Algorithm to  create  a  binary  mask,  which  the  Falling-Ball  Algorithm further  refined  to
improve  edge  detection  and fill  gaps.  The  YOLOv5 transfer  learning model  was  trained using  the
generated dataset to detect and count E. coli colonies. The model achieved a detection accuracy of up to
75%, providing a reliable automated solution for colony counting. Performance evaluation metrics such
as precision, recall, and mAP_0.5 were utilized to assess the model's performance. However, training the
model using the dataset that underwent the framework could not proceed due to its resource-intensive
requirements.

Keywords:  Automated Bacteria Colony Counting, Escherichia coli, E. coli, Image Segmentation,
Novel Framework, hybrid algorithm, Watershed, Falling-Ball, YOLOv5, Transfer Learning
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1. Introduction
It is routine in clinical, culinary, dairy, and pharmaceutical microbiology to get a total microbial count of
certain  substances.  Typical  applications  of  bacteria  colony counting include Ames testing,  bacterial
mutation assays, and Escherichia coli bacterial colonies. Bacteria colonies are traditionally counted with
manual  methods,  which  are  arduous,  time-consuming,  and  require  intense  concentration.  Colony
counters provide an alternative,  long-term answer to this problem by permitting colonies'  rapid and
accurate counting.

A  colony  counter  is  a  tool  to  count  microorganism  colonies  developing  on  agar  plates.  In  the
microbiology laboratory, an agar plate is a thin layer of the nutritional gel used to cultivate bacteria and
fungus in a Petri dish. Various colony counters allow for the exact and rapid counting of bacteria and
yeast colonies. Some colony counters require manual operation, while others are automated (Shrestha,
2022).

The principle of manual counting is straightforward, though tedious. Sometimes, colonies are tiny and
crowded, making them difficult to count, especially when the technician only counts the colonies with
the naked eye.  Counting can be convenient  by dividing the plate  into several  square divisions and
magnifying the colonies with a magnifying glass, which makes counting easy. The manual counting
process allows a very low throughput and is time-consuming, tedious, and labor-intensive. Also, wide
variations are often observed when more than one technician makes counts.

Alternatively, semi‐automatic or fully automatic systems have been developed to ensure reliability and
minimize  operational  problems.  The semi‐automatic  methods are  based on software  alone,  whereas
automatic methods use hardware and software solutions. An increased area of focus in microbiology is
the automation of counting methods. The challenge in automated counting systems includes handling
colonies that touch or overlap other colonies and identifying each colony as a unit despite differing
shapes, sizes, textures, colors, light intensities, and others (Compendium of Biomedical Instrumentation,
n.d.).

Escherichia  coli  (E.  coli)  is  a  Gram-negative  bacterium commonly  found  in  diverse  environments,
including soil, water, and animal intestines. In microbiology research and clinical laboratories, E. coli
colonies  on agar  plates  are  frequently analyzed to  study bacterial  growth,  antibiotic  resistance,  and
pathogenicity (WebMD, n.d.).

Image segmentation is crucial in automated counting by separating colonies from the background and
enhancing their visibility. While various image segmentation techniques exist, the watershed algorithm
is  commonly  used  in  bacterial  colony  counting  due  to  its  simplicity  and  effectiveness  in  touching
colonies (Datagen, n.d.).

However, the watershed algorithm encounters challenges of over-segmentation and under-segmentation,
resulting in counting inaccuracies. To address these issues, researchers have proposed modifications,
such as marker-controlled, seeded, and hierarchical watersheds.
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This study focuses on developing a novel framework for a hybrid image segmentation algorithm that
combines  the  Watershed  and  Falling-Ball  algorithms.  The  hybrid  algorithm  aims  to  improve  the
accuracy of colony separation and enhance visibility in complex images with overlapping colonies or
uneven background illumination. By combining these algorithms, the proposed framework offers a more
sophisticated  approach  to  image  segmentation  for  automated  colony  counting.  Moreover,  the  study
utilizes  YOLOv5,  a  convolutional  neural  network  (CNN)  model  specifically  designed  for  object
detection and image localization. By training the YOLOv5 model using a generated dataset, the study
aims to accurately detect and count E. coli colonies on agar plates through transfer learning.

The proposed system offers an automated and accurate solution for counting E. coli colonies, alleviating
the workload for laboratory technicians and providing reliable and reproducible results. The outcomes of
this study contribute to the advancement of automated systems for bacterial colony counting in research
laboratories and clinical settings, improving efficiency and facilitating further scientific investigations.

The study aimed to address the following problems in automated bacteria colony counting:

(1.1) Limited availability of diverse and localized datasets for Escherichia coli (E. coli) colony
counting

The current availability of E. coli colony counting datasets is limited to established datasets like the
AGAR  (accessible  at  https://agar.neurosys.com/).  While  these  existing  datasets  provide  a  valuable
resource for research, they may not fully capture the diversity and characteristics of E. coli colonies
found in specific local environments. This scarcity of localized datasets hamper may hamper the ability
to explore and address the challenges specific to local E. coli colonies. Thus, the researchers found it
necessary to create a new dataset encompassing samples collected from local environments, enabling
them to develop more context-specific and accurate automated counting systems.

(1.2) Limitations  of  existing  image  segmentation  techniques  in  accurately  identifying  E.  coli
colonies

Current image segmentation techniques struggle to accurately identify E. coli colonies on agar plates due
to irregular colony shapes, overlapping colonies, and variations in colony sizes and colors. Traditional
segmentation algorithms, such as thresholding, may fail to accurately separate colonies in these complex
scenarios, leading to inaccurate counting results. The researchers found it crucial to develop an improved
segmentation algorithm that can robustly handle these challenges and accurately identify individual E.
coli colonies, enabling precise and reliable counting.

(1.3) Underutilization and limited exploration of YOLOv5 in automated bacteria colony counting
Despite the success of YOLOv5 in various object detection tasks, its application and exploration in the
specific domain of automated bacteria colony counting have been limited. The potential benefits and
performance of YOLOv5 for accurately detecting and localizing bacteria colonies on agar plates remain
largely  unexplored.  This  lack  of  utilization  and  exploration  hinders  the  advancement  of  automated
counting  systems,  limiting  the  adoption  of  YOLOv5's  capabilities  and  its  potential  to  improve  the
accuracy  and  efficiency  of  bacteria  colony  counting  processes.  The  researchers  found  it  crucial  to
investigate and evaluate the effectiveness of YOLOv5, specifically in the context of automated bacteria
colony  counting,  to  unlock  its  full  potential  and  advance  the  field.  Additionally,  YOLOv5  offers
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efficiency  in  the  study  by  reducing  hardware  requirements,  such  as  RAM  and  GPU  usage.  Its
streamlined architecture minimizes the memory footprint, allowing for more efficient training.

The general  objective of  this  study was to develop an automated and accurate system for counting
Escherichia coli (E. coli) colonies on agar plates. To achieve this, three specific research objectives were
pursued:

(1.A) Generate images of E. coli colonies on agar plates
In collaboration with Davao Oriental State University (DOrSU), the creation of agar plates with cultured
E. coli was undertaken. The university prepared the agar plates, ensuring the presence of viable E. coli
colonies  under  controlled  conditions.  High-quality  photographs  of  the  prepared  plates  were  taken,
capturing a diverse range of colonies with variations in size, shape, color, and spatial distribution. Data
cleaning techniques were applied to remove anomalies or artifacts from the acquired images to ensure
the  dataset's  accuracy  and  reliability.  Subsequently,  the  images  were  manually  annotated  using
Roboflow,  a  robust  annotation  tool,  to  provide  precise  and  detailed  labels  for  the  colonies.  This
comprehensive dataset of E. coli colonies on agar plates formed the foundation for subsequent training
and evaluation of the automated counting system.

(1.B) Develop  a  novel  framework  for  a  hybrid  image  segmentation  algorithm  combining
Watershed and Falling-Ball methods

Addressing the limitations of existing image segmentation techniques, a novel hybrid framework was
developed by integrating the Watershed and Falling-Ball algorithms. The Watershed Algorithm, known
for its ability to separate touching objects, was employed to produce a visual mask representing the
colonies on the agar plates. To enhance the mask's accuracy and clarity, the Watershed Algorithm output
was further processed using the Falling-Ball Algorithm, which utilized morphological sculpting tools to
smooth out edges and fill gaps. This hybrid approach aimed to improve the reliability and precision of
the object segmentation process, particularly in cases where the original visual mask exhibited high
levels of noise or artifacts.

(1.C) Train the YOLOv5 transfer learning model using the generated dataset and evaluate its
performance

To enable automated counting and localization of E. coli colonies, the YOLOv5 transfer learning model
was employed. The YOLOv5 model was trained to recognize and classify E. coli colonies in the images
using  the  generated  dataset.  Transfer  learning  techniques  were  utilized  to  leverage  the  pre-trained
features of the YOLOv5 model, facilitating efficient training with a limited amount of labeled data. The
performance of the trained model was evaluated using established metrics such as precision, recall, and
mean  Average  Precision  (mAP_0.5).  These  metrics  provided  insights  into  the  model's  accuracy,
detection capability, and localization precision.

The findings of this study may benefit the following:
Microbiologists and researchers in related fields rely on accurate and efficient counting of bacterial
colonies. The proposed system can help reduce the time and effort needed for colony counting, allowing
researchers to focus on analyzing the results of their experiments.
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Laboratories and clinics that perform microbiological analyses for diagnostic or monitoring purposes.
The proposed system can improve the accuracy and speed of colony counting, leading to more reliable
and timely results.

Public health agencies and environmental monitoring organizations use bacterial colony counting to
detect  and  monitor  the  spread  of  infectious  diseases  or  environmental  contaminants.  The  proposed
system can provide a more efficient and reliable way to count colonies, potentially leading to better
disease control and environmental management.

Educational institutions teaching microbiology and related fields. The proposed system can provide a
practical and hands-on example of the application of image processing and machine learning techniques
in microbiology, helping to inspire and train the next generation of researchers and practitioners in the
field.

The  scope  of  this  study  encompasses  the  development  and  evaluation  of  an  automated  system for
counting Escherichia coli (E. coli) colonies on agar plates. The study focused on generating a dataset
comprising images of E. coli colonies, developing a hybrid image segmentation algorithm combining
Watershed and Falling-Ball methods, and training and evaluating the YOLOv5 transfer learning model
for accurate colony detection and counting.

The research revolved around E. coli colonies on agar plates, commonly used in clinical, culinary, dairy,
and  pharmaceutical  microbiology  for  microbial  count  determination.  The  study  aims  to  provide  an
automated solution that significantly reducing the manual effort and time required for accurate colony
counting.

Several delimitations guide the boundaries of this study.
(1.a) The target organism and growth medium are restricted to E. coli colonies on agar plates.
This research does not extend to counting colonies from other bacterial  species or different growth
media. As a result, the findings and methodologies may not readily apply to different microorganisms or
diverse growth conditions.

(1.b) Second, the acquisition of images and the generation of the dataset are integral to this study.
The dataset  comprises  images  from agar  plates  collaboratively  prepared  with  Davao Oriental  State
University. Although efforts were made to ensure diversity within the dataset, its representativeness may
be subject to limitations, including variations in colony morphology and environmental factors.

(1.c) Developing a hybrid image segmentation algorithm, which combines the Watershed and
Falling-Ball methods, constitutes a key aspect of this research.

While the proposed algorithm demonstrates effectiveness, other image segmentation approaches beyond
the scope of this study are not extensively explored or compared.
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(1.d) The study focuses  on training and evaluating the  YOLOv5 transfer  learning model  for
colony detection and counting.

While this model is chosen for its efficacy in object detection tasks, alternative transfer learning models
or architectures are not thoroughly investigated within this research.

(1.e) The performance evaluation of the developed system primarily employs precision, recall,
and mean Average Precision (mAP) metrics.

Although  these  metrics  provide  valuable  insights,  this  study  does  not  extensively  consider  other
evaluation  measures,  such  as  F1-score,  intersection  over  union  (IoU),  or  accuracy  at  various  IoU
thresholds.

(1.f) This research predominantly centers on the technical aspects of automated colony counting.
Application-specific  analyses  and  broader  implications  of  the  counted  colonies,  such  as  bacterial
identification,  antibiotic  resistance  analysis,  or  specific  research contexts,  lie  beyond the  immediate
scope of this study.

2. Related Works
This section provides an overview of previous research on the topic at  hand. Studies from various
disciplines, including image processing, machine learning, and laboratory technology, have investigated
how to automate the bacteria colony counting process. The literature review begins by examining why
E. coli was chosen as the study’s model organism before discussing the various methods proposed by
other studies to automate the counting of bacteria colonies.

2.1. E. coli as a model organism
Escherichia coli  (E. coli)  is a bacterium commonly found in the gut of humans and warm-blooded
animals. Most strains of E. coli are harmless. Some strains, however, such as Shiga toxin-producing E.
coli  (STEC),  can  cause  severe  foodborne  disease.  It  is  transmitted  to  humans  primarily  through
consuming contaminated foods,  such as  raw or  undercooked ground meat  products,  raw milk,  and
contaminated raw vegetables and sprouts (World Health Organization, 2018).

E. coli has been a key model organism from the very earliest work on molecular genetics and continues
to play an essential role today. Much of our understanding of the fundamental concepts of molecular
biology, such as replication, gene expression, and protein synthesis, have all been achieved through
studies of E. coli (Mullan & Marsh, 2019).

Two reasons for choosing E. coli as an experimental organism were that the bacterium grows rapidly on
chemically  defined  growth  media,  and  the  cells  do  not  clump.  The  genetic  analysis  depends  on
populations derived (cloned) from an individual cell, and cloning is simplified when the cells do not
clump. Another reason for the choice of E. coli is that it was the host for many widely studied viruses
that  provided a foundation of molecular biology (Cairns et  al.,  1966) and provided many tools for
genetic and biotechnological manipulations of this bacterium. The ease of biochemical experiments
with E. coli also contributed to the popularity of the organism. The investigator could readily grow (or
purchase) vast quantities of cells, and the proteins are readily extracted from the cells (Cronan, 2014).
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2.2. Automated bacteria colony counting
A fully automated system for counting bacteria colonies would collect images using a digital image-
capturing device, such as a document scanner, Charge-Coupled Device (CCD), digital camera/webcam,
or video equipment. Colonies can be counted from pictures of plates using software tools. A picture of
each plate is taken, and all the pictures are subsequently analyzed. It takes less than 10 seconds to take a
single picture, as opposed to several minutes to count colonies manually, thus saving considerable time.

The captured images are then digitized on a computer utilizing an image-processing software package
with  programming  capabilities.  The  digitized  picture  is  processed  using  single/multi‐threshold
segmentation  procedures  to  separate  and  detect  the  colonies  present  (Compendium of  Biomedical
Instrumentation, n.d.).

2.3. Leveraging image segmentation algorithms
Image segmentation is a method of dividing a digital image into subgroups called image segments,
reducing  the  complexity  of  the  image  and  enabling  further  processing  or  analysis  of  each  image
segment. Technically, segmentation is the assignment of labels to pixels to identify objects, people, or
other vital elements in the image. 

A common use of image segmentation is in object detection. Instead of processing the entire image, a
common practice is using an image segmentation algorithm to find objects of interest in the image.
Then, the object detector can operate on a bounding box already defined by the segmentation algorithm.
This prevents the detector from processing the entire image, improving accuracy and reducing inference
time (Image segmentation: The basics and 5 key techniques, 2022).

2.3.1. Watershed and related techniques
One common segmentation technique is watershed segmentation. Watershed segmentation algorithms
treat images like topographic maps, with pixel brightness determining elevation (height). This technique
detects  lines  forming ridges  and basins,  marking the  areas  between the  watershed lines.  It  divides
images into multiple regions based on pixel height, grouping pixels with the same grey value. The
watershed technique has several important use cases, including medical image processing. For example,
it can help identify differences between lighter and darker regions in an MRI scan, potentially assisting
with diagnosis.

Other segmentation techniques include edge-based, threshold-based, region-based, and cluster-based
segmentation. Edge-based helps locate features of associated objects in the image using the information
from the edges. Threshold-based divides pixels based on their intensity relative to a given value or
threshold,  making  it  suitable  for  segmenting  objects  with  higher  intensity  than  other  objects  or
backgrounds. Region-based involves dividing an image into regions with similar characteristics. Lastly,
cluster-based divides images into clusters of pixels with similar characteristics, separating data elements
and grouping similar elements into clusters (Image segmentation: The basics and 5 key techniques,
2022).
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2.3.2. Falling-ball segmentation technique
Aslam et al. (2021) presented a novel Falling-Ball algorithm, a region-based segmentation algorithm,
and an alternative to watershed transform.

The proposed algorithm detects the catchment basins by assuming that a ball falling from hilly terrains
will stop in a catchment basin. Once catchment basins are identified, the association of each pixel with
one of the catchment basins is obtained using multi-criterion fuzzy logic. Edges are constructed by
dividing an image into different catchment basins with the help of a membership function. Finally, a
closed contour algorithm is applied to find closed regions, where objects within these closed regions are
segmented using intensity information.

2.3.3. Other image-processing techniques
Automating  the  identification,  segmentation,  and  counting  of  stained  vitro  cell  colonies  involve
challenges with background noise and contaminations. Arous et al. (2022) presented a machine learning
procedure to amend these issues by characterizing, extracting, and segmenting inquired cell colonies
using  principal  component  analysis,  k-means  clustering,  and  a  modified  watershed  segmentation
algorithm to identify visible colonies automatically. The proposed segmentation algorithm was tested on
two data sets: a T-47D (proprietary) cell colony and a bacteria (open source) data set. High scores and
low absolute  percentage  errors  (for  T-47D and  bacterial  images)  underlined  good  agreement  with
ground truth data.

Jagga & Singh (2018) proposed combining image processing techniques to automate counting bacteria
colonies. The proposed method takes an image of bacterial colonies on an agar plate and converts it into
a grayscale image. Otsu thresholding is first applied to segment the image and further its conversion
into a binary image. Morphological operations are then applied to clean up the image by removing noise
and unnecessary pixels. Lastly, distance and watershed transformations are applied to the binary image
to create partitions among overlapped and joint bacteria. The segmented image's region properties and
labeling information are used to count bacterial colonies.

2.4. YOLOv5 for object detection
The  advent  of  deep  learning  models  has  revolutionized  the  field  of  object  detection,  enabling
remarkable advancements in automated tasks such as bacteria colony counting. The YOLOv5 (You
Only Look Once) architecture is a prominent model that has gained substantial attention. YOLOv5 has
demonstrated exceptional  performance in real-time object  detection,  with applications ranging from
general  object  recognition to specific tasks like bacteria colony counting.  This section explores the
utilization of YOLOv5 models in automated bacteria colony counting and related object detection tasks,
examining the strengths, limitations, and significant contributions of this approach in microbiology and
beyond.

2.4.1. YOLOv5 for automated bacteria colony counting
In vaccine development, manual colony counting is labor-intensive and error-prone. To address this
challenge, Whipp & Dong (2022) focused on developing and evaluating various deep learning models
within the YOLO (You Only Look Once) framework for automating microbial colony counting. The
evaluation was conducted using S. aureus images obtained from the AGAR dataset, and the developed
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models demonstrated impressive performance, achieving mAP@0.5 scores ranging from 96% to 99%.
The  study  found  that  increasing  model  complexity  did  not  significantly  enhance  performance.
Leveraging the availability of GPUs through Google Colab Pro, the small YOLOv5 model showcased
an impressive inference time of approximately 9 milliseconds per image. These findings underscore the
potential of YOLO-based deep learning models in facilitating automated, real-time microbial colony
counting, offering promising prospects for improving efficiency and accuracy in this crucial aspect of
vaccine development.

2.4.2. YOLOv5 in other biological applications
Sun et al. (2022) aimed to develop a high-speed and nondestructive method for detecting mildewed rice
grains,  using  microscopic  images  and  YOLO-v5  models  to  identify  regions  contaminated  by
Aspergillus niger, Penicillium citrinum, and Aspergillus cinerea. The models achieved accuracies of
89.26%, 91.15%, and 90.19% for detecting mildewed regions, and the study established a logarithmic
correlation between the proportion of mildewed area and the total number of colonies. This research
provides valuable insights for future research on high-speed detection methods for mildewed rice grains
based on MCV technology.

Muhammad et al. (2022) aimed to develop an efficient model for detecting rice leaf disease using the
YOLOv5 deep learning model. By leveraging the upgraded YOLOv5 version, their model outperformed
YOLOv3 and YOLOv4 in terms of  performance and accuracy in object  detection.  The researchers
utilized a dataset of 400 rice leaf images obtained from Kaggle containing various diseases. Training,
validation,  and testing of  the model  were conducted using the Google Colab platform. The model
achieved excellent results with precision, recall, and mAP values of 1.00, 0.94, and 0.62 after training
for 100 epochs (Muhammad et al., 2022).

The enumeration of biological entities is time-consuming and prone to inaccuracies when performed
manually or with OpenCV-based software. Mehdi et al. (2022) proposed an online platform utilizing
multiple trained machine-learning weights to detect yeast colonies, bacterial colonies, and melanoma
clusters.  Their  Pytri  model  achieved  median  relative  error  rates  of  7.56% for  bacterial  and  yeast
colonies  on  Petri  dishes,  6.58% for  colonies  on  96-well  plates,  and 10.28% for  melanoma cluster
microscopy  images.  This  study  demonstrates  the  application  of  advanced  deep  learning  tools  in
bacterial entity detection, offering superior accuracy compared to traditional counting methods.

2.4.3. YOLOv5 in other computer vision tasks
In their study, Mantau et al. (2022) enhanced the YOLOv5 framework for human object detection in
UAV perspective images by incorporating a Genetic Algorithm (GA) to optimize the Hyperparameters.
Using a dataset combining RGB and Thermal Infrared (TIR) images, their YOLOv5-based transfer
learning method achieved higher accuracy than the original YOLOv5 approach. This research aimed to
develop  a  surveillance  system  using  autonomous  UAVs  to  monitor  wide  areas  and  address  the
challenges of limited human resources in tackling illegal activities.

The COVID-19 pandemic that  heightened in  2020 has highlighted the importance of  wearing face
masks in public settings to reduce the transmission of the virus. In their study, Ieamsaard et al. (2021)
explored an effective approach for face mask detection utilizing the YOLOv5 deep learning model. To
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compare their performance, multiple models were developed with varying numbers of epochs, namely
20, 50, 100, 300, and 500. The experimental findings revealed that the deep learning model trained for
300 epochs exhibited the highest accuracy, reaching 96.5%. This research provides valuable insights
into developing a robust face mask detection system, contributing to mitigating the spread of COVID-
19 through effective monitoring of face mask usage.

In viticulture, accurately estimating grape yields is essential for effective crop management. Sozzi et al.
(2022) conducted a study to evaluate different versions of the YOLO (You Only Look Once) object
detection algorithm for real-time detection and counting of grape bunches. They tested various YOLO
models, including YOLOv3, YOLOv4, and YOLOv5, using a diverse dataset of images captured under
different conditions. The results showed that YOLOv5x and YOLOv4 performed well, achieving F1-
scores of 0.76 and 0.77, respectively, with detection speeds of 31 and 32 frames per second. YOLOv4-
tiny showed the best balance between accuracy and speed, making it a suitable choice for real-time
grape yield estimation. On the other hand, YOLOv3 had some limitations due to compensation for false
positives and false negatives, resulting in decreased accuracy.

With the growing use of drones or unmanned aerial vehicles (UAVs), there is an increased need for
monitoring and detecting illicit drone activities in restricted areas. Al-Qubaydhi et al. (2022) proposed
an automated image-based drone-detection system that utilizes the YOLOv5 deep-learning algorithm.
The system achieved excellent precision, recall, and accuracy in detecting drones in surveillance videos.
The  loss  value,  indicating  the  model's  effectiveness,  was  consistently  low,  indicating  accurate
predictions. The system successfully identified the location of drones and marked them with bounding
boxes, enabling effective monitoring and defense against unauthorized drone incursions.

2.5. Common tools in computer vision tasks
The study’s proposed system utilized common tools for computer vision projects, such as Roboflow and
PyTorch. Many studies in various applications have used these tools.

2.5.1. Roboflow
Roboflow is an online platform and set of tools designed to simplify and streamline the process of
training computer vision models. It provides a comprehensive suite of features and workflows that assist
users  in annotating,  preprocessing,  augmenting,  and managing image datasets  for  machine learning
tasks. Roboflow offers an intuitive user interface, annotation tools, and automated data preprocessing
capabilities,  allowing  users  to  prepare  their  image  data  efficiently  and  effectively.  Additionally,
Roboflow  supports  popular  deep-learning  frameworks  and  provides  APIs  and  export  options  for
seamless integration with custom models and applications. Overall, it aims to facilitate the development
and deployment of computer vision models by simplifying and automating key aspects of the data
preparation pipeline (Roboflow, n.d.).

Furthermore,  RoboFlow  is  a  data-centric  cloud-based  workflow  management  system  designed  for
developing AI-enhanced robots. It offers a streamlined approach to robotic development by organizing
the process into four building modules:  data processing,  algorithmic development,  backtesting,  and
application adaptation. The system's containerized and orchestrated design enhances maintainability and
enables parallel development. In a study by Lin et al. (2022), RoboFlow was utilized to develop two
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prototype systems, "Egomobility" and "Egoplan," showcasing its effectiveness in providing navigation
functionalities and solving path-planning problems for robotic applications. The results demonstrate the
system's ability to streamline the development lifecycle and its potential for various intelligent robotic
applications.

Sharma et al. (2022) developed an intelligent vehicle detection system using the You Only Look Once
(YOLO) v5 model to identify cars, traffic lights, and pedestrians in various weather conditions for real-
time identification in a typical vehicular environment. Object detection in driving can be affected by
bad  weather  conditions,  which  makes  driving  dangerous.  The  proposed  system was  trained  using
Roboflow datasets to recognize 11 distinct classes of vehicles, pedestrians, and traffic signals for rainy
and regular weather scenarios.  Real video sequences of road traffic were also used to evaluate the
system's performance, which showed satisfactory results. This study highlights the need for intelligent
traffic monitoring while driving and provides a potential solution to address traffic congestion concerns
in large cities with expanding populations.

2.5.2. PyTorch
PyTorch is an open-source machine learning framework that provides a flexible and efficient platform
for building and training deep learning models. It is widely used in research and industry for various
tasks  such  as  computer  vision,  natural  language  processing,  and  reinforcement  learning.  It  offers
dynamic computational graphs, allowing users to define and modify their models on the fly, which
makes it particularly suitable for tasks that involve complex or changing architectures. It also provides a
rich set of tools and libraries that facilitate data loading, model optimization, and deployment. With its
Pythonic programming interface and strong community support, PyTorch has gained popularity as a
robust framework for deep learning development (PyTorch, n.d.).

In  their  paper,  Paszke  et  al.  (2019)  detailed  PyTorch's  implementation  principles  and  architecture,
emphasizing its compatibility with an imperative and Pythonic programming style. PyTorch allows for
code as a model, making debugging easy and ensuring consistency with popular scientific computing
libraries. It efficiently utilizes hardware accelerators like GPUs while remaining user-controlled. The
authors  demonstrate  the  performance  of  PyTorch  through  subsystem analyses  and  benchmarks  on
commonly  used  datasets.  This  research  showcases  PyTorch  as  a  powerful  tool  for  deep  learning,
enabling efficient and user-friendly development.

2.6. CNNs for automated bacteria colony counting
For  texture  analysis  to  classify  genera  and  species  of  bacteria,  Zieliński  et  al.  (2017)  used  deep
Convolutional Neural Networks to obtain image descriptors, which are then encoded and classified with
Support Vector Machine or Random Forest. To evaluate this approach and to make it comparable with
other  systems,  they  provide  a  new dataset  of  images  called  the  DIBaS  dataset  (Digital  Image  of
Bacterial Species), which contains 660 images with 33 different genera and species of bacteria.

Most fully automated techniques were developed using deep learning (DL), which often encountered
problems with the need for sizeable collections of annotated plate images. For this reason, Albaradei et
al. (2020) proposed an application of transfer learning to cell colony counting by exploiting existing
models trained for other tasks. The proponents presented how a small dataset could transform a deep
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learning  model  designed  for  counting  objects  in  congested  scenes  into  a  specialized  cell  colony
counting model and achieve better performance than existing, more widely used models.

2.7. Other approaches to automated bacteria colony counting
Different approaches to automating the bacteria colony-counting process include the following:

2.7.1. Near-infrared light
The results of some developed automatic counting methods could save labor and time but are easily
affected  by  uneven  illumination  and  reflection  of  visible  light.  Zhu  et  al.  (2018)  constructed  a
convenient  and cost-effective  system to  obtain  images  of  colonies  at  near-infrared  light  to  offer  a
method that counts colonies automatically and is robust to light. They then proposed an automated
method to detect and measure colonies by processing images. The colonies cultured using raw cows’
milk were used as identification objects.  The developed system mainly consisted of  a  visible/near-
infrared camera and a circular near-infrared illuminator.

The proposed method included four steps, i.e., eliminating noises outside the agar plate, removing plate
rim and wall, identifying and separating clustered or overlapped colonies, and counting colonies using
connected region labeling, distance transform, and watershed algorithms. A graphic user interface was
also developed for the proposed method.

The  automatic  counting  method's  relative  error  and  counting  time  were  compared  with  manual
counting. The results showed that the relative error of the automatic counting method was −7.4%~ +
8.3%, with an average relative error of 0.2%, and the time used for counting colonies on each agar plate
was 11–21 s, which was 15–75% of the time used in manual counting, depending on the numbers of
colonies on agar plates. The proposed system and automatic counting method demonstrated promising
performance in terms of precision, and they are robust and efficient in terms of labor- and time-savings.

2.7.2. Focusing on hyperspectral features of agar plates
For food quality assessment purposes, Shi et al. (2019) developed a noise-free bacterial colony counting
method that identified noise (i.e.,  sausage, bacon, and millet  fragments) that have similar colors or
shapes to those of bacteria colonies.

First, spectral features corresponding to colony cluster regions and background regions (agar medium
and  food  fragments)  were  extracted  after  collecting  hyperspectral  images.  A  cluster-segmenting
calibration model was developed to identify colony clusters and background regions. Second, spectral
features of colony centers and borders were extracted, and a colony-separating calibration model that
could separate single colonies from clusters (multiple colonies contacting each other) was developed.
Third,  each pixel  of  an agar  plate  hyperspectral  image was identified  using established calibration
models, enabling the colonies on the agar plate to be counted successfully (R 2 = 0.9998). The results
demonstrated that the proposed method could identify the noises caused by food fragments with similar
colors or shapes to those of colonies.
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2.8. Mobile app-based colony counters
Many colony counter solutions are benchtop-based, which are often bulky and expensive. Austerjost et
al. (2017) investigated a cost-effective way to automate the colony counting process with smart devices,
using their built-in camera features and a server-based image processing algorithm. The performance of
the developed solution is compared to a commercially available smartphone colony counter app and the
manual  counts  of  two scientists  trained in  biological  experiments.  The comparisons show the high
accuracy of  the presented system and demonstrate  the potential  of  smart  devices  to  displace well-
established laboratory equipment.

Kumar et al. (2017) developed and demonstrated a simple Android-based automated colony counter
called “Colonizer” that has been freely available on Google Playstore. Using any Android-based device,
the algorithm can threshold and segment overlapping colonies,  providing rapid and accurate counts
across various colony densities (from 50-500 colonies/plate) for different microbes.

Taithong  et  al.  (2022)  presented  a  new  smartphone-based  method  called  Bacillus  Cereus  Image
Counting System (BCICS, pronounced as “B. kiks”) for the automatic counting of B. cereus bacteria
colonies. BCICS uses Projection Profiling, Circle Hough Transformation, Adaptive Thresholding, and
Power-Law Transformation image processing techniques to achieve high image clarity. It then uses the
Connected-Component Labeling (CCL) technique to correctly count the colonies, including overlapping
ones. These techniques were built into an Android smartphone application.

The results of counting the colonies with BCICS were compared with the results of hand-counting the
same dishes. The accuracy rate of each dish count and the average dish accuracy across all dishes were
calculated. BCICS counted total colonies with an accuracy of 90.14%, close to hand counting since
hand counting commonly involves an error rate of 5 to 10%. The application reportedly took only 3-5
seconds to count one Petri dish, more than 74 times faster than the time required for manual counting.

2.9. IoT-based colony counter
Vongmanee  et  al.  (2018)  proposed  an  automated  bacteria  colony  counter  that  captures  images  of
cultured bacteria  on agar  plates  using a  webcam camera.  It  uses  Raspberry Pi  for  processing with
capturing, thresholding, circular Hough transform, watershed segmentation, and displaying results of
the number of colonies on the culture media.

2.10. Synthesis
Pursuing an optimal technique for automating bacteria colony counting is a subject of active research.
Existing  literature  encompasses  a  range  of  approaches  to  developing  effective  solutions,  including
exploring modified image segmentation algorithms,  integrating multiple layers of  image processing
techniques, and utilizing deep learning methodologies. In addition, studies have investigated methods
for enhancing image quality and resolution in the dataset to improve system performance. Furthermore,
research efforts have extended to developing user-friendly interfaces, such as smartphone apps, desktop
applications, and IoT devices, to facilitate user interaction with automated colony counting systems.

In line with this ongoing research, the present study aimed to develop an automated bacteria colony
counting system by developing a novel framework for a hybrid image segmentation algorithm and
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harnessing the power of the YOLOv5 transfer learning model. By leveraging the strengths of these
techniques and tools, the system can be trained to identify and count E. coli colonies on agar plates
accurately.  This hybrid approach is  expected to enhance the accuracy and efficiency of the colony
counting process, offering a more robust and reliable solution than traditional methods. Moreover, to
ensure usability and accessibility, the proposed system is seamlessly integrated with a smartphone app-
based graphical user interface. This integration enables users to visualize and analyze the total colony-
forming unit count conveniently, empowering researchers and practitioners with efficient and intuitive
tools  for  their  work.  By implementing this  advanced methodology,  the  study aims to  significantly
contribute to automated bacteria colony counting, paving the way for improved scientific research and
practical applications.

3. Materials and Methods
3.1. Research Design
This study employed an  applied research design based on the intended application of  its  findings,
which is to contribute to the ongoing pursuit of an accurate and reliable way to automate the bacteria
colony counting process. The term "applied research" describes scientific inquiry and investigation that
addresses real-world issues, making it crucial for addressing problems that often affect people's lives,
livelihoods, health, and general well-being (Formplus Blog, 2020). 

This study employed an experimental research design based on its objectives. "Exploratory research" is
a methodological approach that looks at research issues that have not been thoroughly investigated
before (George, 2022). The proponents aimed to explore the possibility of improved performance within
the  proposed  automated  bacteria  colony  counter  by  incorporating  a  hybrid  image  segmentation
algorithm (using Watershed and Falling-Ball) into it.

3.2. Research Local
The study's data collection process was conducted at Davao Oriental State University (DOrSU) of Mati
City, Davao Oriental, Philippines. The proponents captured images of cultured E. coli bacteria colonies
on agar plates prepared by DOrSU’s Institute of Agriculture and Life Sciences (IALS). The bacteria
culturing process was conducted in the microbiology laboratory of the university’s Science Building by
select faculty members and students at the said institute. 

The software development aspect was conducted in Davao City, Davao del Sur. Advising sessions with
the proponents’ thesis adviser and oral defenses were conducted in Mapúa Malayan Colleges Mindanao.
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3.3. Conceptual Framework

Figure 1: Conceptual Framework

Figure 1 presents  an Input-Process-Output  (IPO) model,  illustrating the inputs  and processing tasks
necessary for obtaining the study's desired output. The study encompassed two primary inputs. The first
was image input, which involved uploading images of cultured  E. coli on agar plates to the proposed
system.  This  resulted  in  the  system displaying visualized  data  indicating  the  total  count  of  E.  coli
colonies on the captured plate. The second input comprised training data, representing an image dataset
specifically collected for training the image recognition capabilities of the YOLOv5 model.

The  study  utilized  Roboflow,  a  comprehensive  platform  designed  for  constructing  and  deploying
computer vision applications to identify significant shapes and objects within the images.  It provides
tools  for  data  preparation,  model  training,  deployment,  and integrations  with  popular  deep-learning
frameworks and cloud services. With Roboflow, users can annotate images and videos, create custom
datasets,  train  computer  vision  models,  and  deploy  those  models  to  various  platforms.  Roboflow
supports various computer vision tasks and can be used in multiple industries.

The  development  of  the  hybrid  image  segmentation  algorithm involved employing OpenCV (Open
Source Computer Vision), a widely adopted open-source library offering developers a range of tools and
algorithms  for  computer  vision,  image  and  video  processing,  and  machine  learning.  OpenCV  has
applications in numerous fields, such as robotics, surveillance, autonomous vehicles, and augmented
reality.

For detecting and counting  E. coli colonies through transfer learning, the study utilized YOLOv5, a
neural  network  model  recognized  for  object  detection  and  classification  capability.  YOLOv5  is  a
continuation of the YOLO (You Only Look Once) series of models, featuring enhanced accuracy and
speed  compared  to  its  predecessors.  It  has  widespread  usage  across  computer  vision  applications,
including autonomous driving, surveillance, and robotics.  Transfer learning, employed in this study,
refers to reusing a pre-trained model developed for one task as a starting point for a different but related
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task. Leveraging the knowledge acquired by the pre-trained model significantly reduced the data and
time requirements for training a new model while improving performance.

Lastly, the model's performance in E. coli colony detection and counting on agar plates was evaluated
using  PyTorch,  a  prominent  open-source  machine-learning  library  renowned  for  constructing  and
training neural networks. Developed by Facebook's AI research team and based on the Torch library,
PyTorch provides a flexible and intuitive platform for implementing deep learning models, supporting
dynamic computation graphs, automatic differentiation, and seamless deployment across CPUs, GPUs,
and other devices.

3.4. Data Collection

Figure 2. Framework for dataset generation

This  section  presents  the  steps  involved  in  acquiring  and  preparing  the  dataset  for  the  study.  It
encompasses  sample  preparation,  where  E.  coli colonies  were  cultivated  on  agar  plates  and  the
subsequent acquisition of images capturing these plates. The images underwent cleaning, annotation,
and splitting into training, validation, and testing datasets.

3.4.1. Producing Agar Plates with Cultured E. Coli
Production of agar plates with cultured E. coli was headed by the representatives of DOrSU-IALS. They
used  the  CFU (Colony  Forming  Unit)  method,  a  widely  recognized  and  established  technique  for
quantifying  the  number  of  viable  microorganisms  in  a  given  sample.  It  is  commonly  used  in
microbiology to estimate the concentration or count of bacteria or other microorganisms in a liquid or
solid culture medium. The method involves diluting and plating the sample on an appropriate  agar
medium,  allowing  the  viable  organisms  to  grow  into  visible  colonies.  These  colonies  are  usually
counted, and the results are expressed as CFUs per unit volume or weight of the original sample.

It is important to note that the CFU process only counts viable bacterial cells, meaning cells capable of
growing and dividing on the agar medium. It does not count non-viable cells, such as those killed by
heat, chemicals, or other factors. Additionally, the CFU process assumes that each colony represents a
single bacterial cell, which may not always be accurate, particularly for bacteria that grow in clusters or
chains. Despite these limitations, the CFU process is widely used and reliable for estimating the number
of viable bacteria in a sample.

Preparation of Materials
The sample preparation process required the materials and equipment enumerated in Table 1, which
were acquired from various vendors and on-hand stocks in the DOrSU microbiology department.
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Table 1: Lab equipment and materials for sample preparation

Material / Equipment Description

Petri dishes

Petri dishes are shallow, cylindrical, transparent plastic or glass dishes with
lids.  Also  known  as  Petri  plates  or  culture  dishes,  they  are  used  as
containers for solid agar medium. They provide a flat surface on which the
diluted sample is plated and allow the growth of bacterial colonies to be
observed and counted.

EBM agar

EBM agar refers to a specific type of agar medium called Eosin Methylene
Blue agar.  Agar is a gelatinous substance from seaweed as a solidifying
agent  in  microbiological  culture  media.  EBM  agar  contains  specific
indicators  and  nutrients  that  help  distinguish  between  different  types  of
bacteria, such as E. coli, based on their growth and colony characteristics.

Nutrient broth

The nutrient broth is a liquid medium containing essential nutrients for the
growth of microorganisms. The CFU method is used as a diluent to disperse
and dilute the water sample, making colony counting easier. Additionally,
the nutrient broth provides a supportive environment for bacterial growth
during incubation, enabling the formation of visible colonies on agar plates
for accurate quantification.

Dilution tubes

Dilution  tubes  are  sterile  containers,  typically  glass  or  plastic,  with
calibrated volume markings. They are used to perform serial dilutions of the
original sample. Each dilution tube in the series contains a progressively
lower  concentration  of  bacteria,  allowing  for  the  estimation  of  viable
bacterial counts within a countable range.

Pipettes

Pipettes are slender, calibrated tools with tapered tips that transfer precise
volumes of the original sample or dilutions from one container to another.
They  ensure  accurate  and  controlled  dispensing  of  liquids  during  the
dilution process, plating, and other steps in the CFU plating process.

Incubator

An incubator is a controlled environment chamber used to maintain optimal
temperature  and  humidity  conditions  for  the  growth  of  microorganisms.
Incubators are essential for promoting the growth of bacteria on the agar
plates.

Autoclave

An  autoclave  is  a  device  used  for  sterilizing  equipment  and  materials
through high-pressure saturated steam. It sterilizes the agar medium, dilution
tubes, and other items to eliminate potential contaminants and ensure aseptic
conditions during the procedure, preventing unwanted microbial growth that
could interfere with accurately determining bacterial colony-forming units
(CFUs).

Sample Collection
Sample collection involved obtaining representative water samples from local faucets located within the
DOrSU campus that  had confirmed  E. coli presence.  Glass sterile bottles that  were pre-rinsed with
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sterile water were used to collect the samples to prevent any potential contaminants. The samples were
immediately transported to the laboratory promptly to prevent any potential changes or alterations in the
microbial population due to environmental factors or natural fluctuations.

Figure 3: Water samples from local faucets within DOrSU

Serial Dilution
Serial dilution involved diluting the collected water samples to obtain a range of dilutions suitable for
CFU plating.

Labeling the Dilution Tubes
A series of dilution tubes was first prepared, with each tube labeled with a corresponding dilution factor,
such as 101, 102, 103, and so on. A dilution factor refers to the extent to which a sample is diluted during
serial dilution. It represents the ratio of the volume of the original sample to the volume of the diluent
(usually a sterile liquid, such as saline or broth) added to achieve the desired dilution. For example, a
dilution factor of 102 indicates that the original sample was diluted by a factor of 100 (1 part sample to
99 parts diluent). Dilution factors control the concentration of bacteria in subsequent dilutions, allowing
for a range of dilutions that can yield countable colonies on agar plates for accurate quantification.

Transferring the Sample
A sterile pipette transferred 1 mL of the water sample from the collection container to the first dilution
tube. The dilution tube contained a diluent, a sterile liquid used to dilute the sample. The DOrSU-IALS
representatives used sterile broth as the diluent.

Mixing the Contents
The contents of the dilution tube were then mixed thoroughly to ensure homogeneity. This was done by
swirling the tube in a vortex motion or gently inverting it several times. The diluent served as a medium
for  the  bacteria  in  the  sample  to  disperse,  ensuring a  more  accurate  representation of  the  bacterial
concentration.  It  also  provided an environment  that  supports  bacterial  growth during the  upcoming
incubation step.

Serial Dilution Process
To perform the subsequent dilutions, 1 mL was taken from the first dilution tube and transferred to the
second dilution tube.  The contents  were mixed as  before.  This  process  was then repeated for  each
subsequent dilution tube.  This created a logarithmic dilution series,  with each tube having a higher
dilution factor than the previous one. The serial dilution process continued until the desired dilutions
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were  achieved.  The  number  of  dilutions  in  a  series  usually  depends  on  the  anticipated  bacterial
concentration and the expected range of colony counts on the agar plates.

Figure 4: Preparing and labeling the dilution tubes

Plating and Incubation
Plating and incubation involved spreading the diluted sample onto solid agar plates and allowing the
bacteria to grow into visible colonies.

Agar Preparation
The EBM agar was prepared by dissolving the powder in distilled water, heating the resulting mixture to
melt the agar, and then sterilizing it using an autoclave to ensure it was free from contaminants.

Figure 5: Weighing agar powder to be dissolved with distilled water

Figure 6: Stirring and heating agar mixture
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Figure 7: Sterilizing agar mixture in the autoclave

Pouring Agar Plates
Once the EBM agar was prepared and sterilized, a measured amount of the molten agar was poured into
each sterile Petri dish. The plates were left to cool and solidify completely, creating a flat surface for
bacterial growth.

Figure 8: Pouring sterilized agar onto Petri dishes

Spreading the Sample
Using a sterile pipette, about 0.1 mL was taken from the desired dilution tube containing the diluted
sample and transferred onto the surface of the agar plate. The diluted sample was spread evenly by
swirling the plate to allow the bacteria to form isolated colonies.

Figure 9: Transferring 0.1 mL of diluted sample onto an agar plate
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Incubation
The agar plates were allowed to sit at room temperature for a few minutes to absorb the liquid into the
agar.  Once the agar  plates  had solidified,  they were inverted and placed in  an incubator  set  at  the
appropriate temperature for E. coli growth, typically around 37°C (98.6°F). The plates were incubated
for 24 to 48 hours. E. coli bacteria will grow during incubation and form visible colonies on the agar
surface. These colonies arise from a single viable bacterium or a group of closely spaced viable bacteria.
Each colony represents the progeny of a single cell or a small group of identical cells.

Figure 10: Incubator housing the agar plates with E. coli bacteria

3.4.2. Image Acquisition
Eight (8) batches of agar plates with cultured  E. coli  were produced and digitally captured between
December 2022 and January 2023. The agar plates were photographed using an Olympus Tough TG-6
Digital Camera. The resulting images had a resolution of 2048 × 1536 pixels and were saved in JPEG
format, the default format of the used camera.

The plates were captured inside the microbiology laboratory, where natural light from the only glass
window and artificial light from the ceiling lights caused glares and shadows to appear in the images. To
lessen their presence in the photos to some extent, the plates had to be held up by hand and titled at a
certain angle.

The camera was positioned perpendicular to the surface of the agar, which was directly above or in front
of the plate, depending on whether it was laid on a flat surface or held up at a certain angle. However,
some  images  from  the  first  batches  of  samples  captured  tilted  plates  as  the  prospects  were  still
experimenting with the angle and lighting.

3.4.3. Data Cleaning
The proponents and DOrSU-IALS representatives collected over 1,900 photos of cultured agar plates.
However, most of the photos had to be removed from the dataset due to blurriness, duplication, or their
plates having colonies beyond the countable range. The resulting dataset contained a total of 364 photos.
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Figure 11: E. coli colonies on an agar plate

3.4.4. Ground Truth Annotation
Ground  truth  annotation  refers  to  manually  labeling  or  annotating  data  with  accurate  or  reliable
information, serving as the reference or “truth” for subsequent analysis or model training. Computer
vision projects  involve  marking or  tagging specific  objects,  regions,  or  attributes  of  interest  within
images or videos. Crucial for developing and validating computer vision systems, as it provides a basis
for comparison and enables the system to learn and make accurate predictions or classifications based on
the annotated data.

While  the  resulting  dataset  had  364  photos,  the  proponents  only  annotated  130  due  to  the  time
constraints when conducting the study. The 130 photos of E. coli colonies on agar plates were manually
annotated using Roboflow, an advanced computer vision platform.

Figure 12: E. coli colonies on agar plate marked with bounding boxes

Each E. coli colony was carefully marked with a bounding box for each photo. Each bounding box was
labeled with a unique identifier to track each colony across different images. The final dataset consisted
of 21,056 annotated E. coli colonies.

3.4.5. Training, Validation, and Testing Data Generation
The annotated dataset was then split into three subsets: a training set of 89 images (16,244 annotated
colonies), a validation set of 25 images (3,059 annotated colonies), and a testing set of 16 images (1,753
annotated colonies).

The original training dataset contained 89 images with 16,858 annotations of  E. coli colonies. After
adding two augmentations, namely  flipping and  noise control increase, the number of images in the

IPMESS-24 22



IJIRMPS E-ISSN: 2349-7300

training data folder increased to 266 with 49,272 annotations of  E. coli colonies.  Flipping refers to
transforming an image horizontally or vertically, effectively creating a mirrored version of the original
image. Noise control increase refers to adding simulated noise or perturbations to the images. This can
involve  introducing  random variations,  such  as  altering  the  brightness,  contrast,  or  color  levels,  or
adding  synthetic  noise  patterns  to  mimic  real-world  variations  or  imperfections  in  the  data.  These
augmentation techniques introduce variations in the dataset, enhancing the model's ability to generalize
and improve its robustness in handling different orientations and real-world variations in the images.

3.5. Novel Framework for Hybrid Image Segmentation Algorithm
Image segmentation is dividing an image into meaningful and visually coherent regions or segments to
facilitate analysis, recognition, and manipulation of specific objects or areas within the image. In the
context of this study, it refers to the process of partitioning an image containing bacterial colonies into
distinct and individual segments or regions corresponding to each colony. It involves identifying and
separating the colonies from the background and neighboring colonies, allowing for precise localization
and counting. 

The study developed a novel framework for a hybrid image segmentation algorithm that combines the
Watershed and Falling-Ball image segmentation algorithms. Leveraging their complementary features,
the  proposed  framework  aims  to  enhance  the  accuracy  and  efficiency  of  image  segmentation  by
effectively delineating objects and boundaries.

The  Watershed algorithm is a region-based segmentation method that simulates the behavior of water
flowing into different catchment basins. It treats the grayscale image as a topographic relief map, where
regions correspond to catchment basins. By identifying regional minima and flooding them with water,
the algorithm separates different objects or regions based on intensity discontinuities. On the other hand,
the  Falling-Ball algorithm is a boundary-based segmentation method that operates by rolling a virtual
ball over the image. The ball starts at different positions and gradually grows, adhering to the local
intensity gradients.  As the ball  grows,  it  detects  boundaries or  edges between objects  based on the
change in pixel intensities, thus delineating distinct regions.

The Watershed algorithm provides excellent region-based segmentation capabilities, while the Falling-
Ball algorithm excels in boundary detection. Combining the Watershed and Falling-Ball algorithms in a
hybrid framework can harness the strengths of both approaches. The proposed framework combines
different image processing techniques to identify and count bacterial colonies in an image accurately.
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Figure 13: A proposed novel framework for the hybrid image segmentation algorithm

Figure  13  shows  the  proposed  novel  framework  for  the  hybrid  image  segmentation  algorithm that
combines Watershed and Falling-Ball. The following sections explain the illustrated steps in detail.

3.5.1. Watershed Image Segmentation Algorithm
First, an input image from the dataset and its corresponding set of annotations are processed. This first
step  involves  converting  the  input  image  into  a  simplified  binary  image.  This  process  uses  Otsu's
thresholding method, which separates the image into the foreground (bacterial colonies) and background
regions.

Figure 14: A binary image separated into foreground and background

A mask is created to isolate the bacterial colonies from the background by drawing rectangles around the
labeled  annotations  in  the  image.  This  mask  acts  as  a  guide  to  separate  the  colonies  from  the
background. Then, a technique called morphological opening is applied further to enhance the quality of
the colonies' representation. This technique helps remove any unwanted noise present in the colonies'
boundaries.

Furthermore, a technique called Distance Transform calculates the distance of each foreground pixel
(colony) to the nearest background pixel. This information is then used to create a map that represents
the distances. By applying a threshold to this map, the pixels are categorized as belonging to a colony or
part of the background.
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Figure 15: Applying distance transform and thresholding to the image

The Watershed algorithm is then employed on the original image using the markers obtained from the
previous step. This algorithm helps segment the image, separating the individual colonies from one
another. 

Figure 16: Applying the watershed algorithm to the image

3.5.2. Falling-Ball Image Segmentation Algorithm
With the Falling-Ball component, the input image is converted to grayscale, a simplified image form
where  shades  of  gray  represent  colors.  The  markers  obtained  from  the  Watershed  Algorithm  are
transformed into a binary mask, meaning each pixel is assigned a value of either 1 or 0. Pixels with
marker values greater than 1 are set to 1, while the rest are set to 0.

Figure 17: Applying morphological closing to the image

The framework applies a  process called morphological  closing using different  circular  structures of
various sizes. This process helps fill gaps or holes within the markers using shapes resembling circles.
This step ensures that the colonies are well-defined and connected.

The resulting mask obtained from the morphological closing is then used to generate a segmented image.
This image isolates areas within the markers not filled during the closing operation, providing a more
accurate representation of the colonies.

Finally, a thresholding technique is used to create a binary image where the colonies are represented as
distinct objects. A bitwise OR operation combines the information from multiple binary images into a
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single  output  image.  This  operation  merges  the  binary  images,  resulting  in  a  comprehensive
representation of the bacterial colonies in the original image.

3.6. Training YOLOv5 Weights Using Annotated Dataset

Figure 18: Using the annotated dataset to train pre-trained YOLOv5 weights

In order to train a model specifically for the recognition and counting of E. coli colonies, the proposed
framework employed an annotated dataset along with pre-trained weights obtained from YOLOv5. This
training process aimed to enhance the model's capabilities and produce improved weights.

It is important to note that the pre-trained weights utilized in this framework are not from an outdated
model. Instead, they are derived from a "pre-trained" backbone network based on the architecture of
Resnet50 networks. This backbone network has been trained on a large dataset to learn and extract
general  features  from various  types  of  images.  By leveraging these  pre-trained weights,  the  model
benefits from the prior knowledge and feature extraction capabilities of the Resnet50 architecture, which
aids in accurately identifying and classifying E. coli colonies.

3.7. Performance Evaluation
The system was evaluated by comparing the results obtained from two different sets of weights. The first
set  of  weights  was  trained using  the  original  annotated  dataset  and pre-trained model  provided by
YOLOv5. The second set of weights was trained using the annotated dataset that underwent the hybrid
framework.

The evaluation of the models'  effectiveness relied on well-established metrics: precision, recall,  and
mAP_0.5.  Precision  measures  the  proportion  of  correctly  identified  E.  coli  colonies  out  of  all  the
colonies predicted by the system. Recall quantifies the ratio of correctly detected E. coli colonies against
the total number of actual colonies in the dataset. Lastly, mAP_0.5 provides an aggregate evaluation by
computing the mean average precision at an intersection over a union (IoU) threshold 0.5.

By comparing the performance and results obtained from the two sets of weights, insights can be gained
into the effectiveness of the hybrid framework in improving the accuracy of E. coli colony recognition
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and counting. This evaluation process allows for determining how much the hybrid framework enhances
the system's performance compared to the baseline provided by the YOLOv5 pre-trained weights.

3.8. Limitations of the Methodology
The following section discusses the limitations inherent in the methodology employed for the automated
bacteria  colony  counting  system  using  the  hybrid  image  segmentation  algorithm  framework  and
YOLOv5 transfer learning model.

Dependence on Image Quality
The proposed system's accuracy may heavily depend on the input image's quality. If the image is of low
resolution, has uneven lighting, or has an inconsistent background, the algorithm's performance may be
adversely affected, resulting in inaccurate colony detection and counting.

Limited Flexibility
The proposed system was specifically designed for E. coli colonies on EBM agar plates and may not be
suitable for other bacteria species, agar variants, or counting methods. Adapting the system to other use
cases may require significant modifications to the underlying algorithms and training datasets.

Overlapping Colonies
The system may have difficulty accurately detecting and counting overlapping colonies on the agar
plate. This is particularly true when the colonies are too close to each other, as it may be challenging to
separate them accurately using the proposed hybrid segmentation algorithm.

Computational Resources
The  development  of  the  system,  especially  in  the  model  training  steps,  requires  significant
computational resources, including high-performance computing (HPC) clusters and graphics processing
units (GPUs). Limited computational resources may affect the performance and accuracy of the system.

Processing Time. The proposed methodology involves several computationally intensive steps, such as
image segmentation and neural network processing, which can take significant time to complete. This
can be a limitation in scenarios requiring quick and real-time analysis.

3.9. Ethical Considerations
The following ethical considerations were taken into account during the development of the system:

Protection of Participants
The  use  of  bacterial  cultures  in  this  research  raises  concerns  regarding  the  safety  and  welfare  of
laboratory personnel.  Safety protocols have been established and followed throughout the project to
minimize potential hazards associated with bacterial cultures. These protocols include using personal
protective equipment (PPE), properly disposing of materials, and using designated laboratory spaces. In
addition,  all  laboratory  personnel  have  undergone  training  in  properly  handling  and  disposing  of
bacterial cultures.
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Environmental Impact
The development of the system may have environmental impacts, particularly in biowaste generation.
The proponents and lab personnel ensured the proper disposal of materials and the implementation of
sustainable practices in the laboratory.

4. Results and Analysis
4.1. Generate images of E. coli colonies on agar plates
The study's first objective aimed to generate images of E. coli colonies on agar plates. To achieve this,
laboratory steps were performed to culture E. coli on agar plates as described in the methodology. A
total of approximately 1,900 images were captured from these plates. However, several images were
excluded from the dataset during the data curation due to factors such as blurriness, duplication, or
colonies beyond the countable range. As a result, the final dataset for analysis comprised a total of 364
images.

Due to time constraints, manual annotation of the images was conducted on a subset of the dataset.
Specifically, 130 images were manually annotated to provide ground truth data for subsequent algorithm
development  and  evaluation.  Roboflow,  an  annotation  tool,  was  utilized  to  ensure  consistent  and
accurate annotations for the annotated images.

The  resulting  dataset  of  130  annotated  images  was  a  valuable  resource  for  training  and  validating
algorithms designed for automated  E. coli colony recognition and counting. These annotated images
encompass  diverse  colony  sizes,  shapes,  and  spatial  distributions,  capturing  the  inherent  variability
encountered in real-world scenarios. The availability of such a dataset will contribute to developing and
refining algorithms aiming to  automate  the  colony counting process,  facilitating rapid  and accurate
analysis of bacterial colonies on agar plates.

4.2. Develop a hybrid image segmentation algorithm framework using Watershed and Falling-
Ball

Figure 23: Mask output results
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This study's hybrid image segmentation algorithm combined the Watershed Algorithm and the Falling-
Ball  Algorithm.  The Watershed Algorithm generates  a  visual  mask,  presented in  a  gradient  format
indicating  difficulty  identifying  bounding  boxes  within  the  mask.  Bounding  boxes  closer  to  the
background color are more challenging to identify than those farther away.

In the Falling-Ball Algorithm, the output from the Watershed Algorithm is utilized to create a binary
mask. This is achieved by applying a morphological sculpting tool,  which focuses on the region of
gradient bounding boxes. This step aims to smooth out the edges and fill in gaps, thereby enhancing the
clarity and ease of identification.

The integration of these two algorithms has the potential  to improve the accuracy and reliability of
object detection outcomes, particularly when dealing with visual masks that exhibit high levels of noise
or artifacts. By refining the initial mask through the Falling-Ball Algorithm, the resulting binary mask
facilitates more precise identification of objects of interest.

4.3. Train the YOLOv5 transfer  learning model  using the generated dataset  and evaluate  its
performance

Table 2 presents the results of training the YOLOv5 transfer learning model using the base annotated
dataset,  which  refers  to  the  dataset  that  has  not  undergone  the  developed  hybrid  framework.  The
evaluation metrics utilized in this analysis include precision, recall, and mAP_0.5.

Table 2: Metric results of the model trained using the original annotated dataset

The table displays numerical results organized chronologically based on the number of training epochs,
with an interval of 10 epochs spanning from 0 to 99.
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Figure 24: Precision metrics of the model trained using the base annotated dataset

Precision, a metric assessing the accuracy of positive predictions made by the model, yielded a relatively
high score of 0.5890, as seen in Figure 23 and enumerated in Table 2. This indicates that the trained
model is proficient in making correct predictions based on the provided dataset.

Figure 25: Recall metrics of the model trained using the base annotated dataset

Regarding the recall values depicted in Figure 24 and enumerated in Table 2, the highest value recorded
is 0.495. This implies that the model can accurately identify a significant proportion of positive instances
present within the dataset.
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Figure 26: mAP_0.5 metrics of the model trained using the base annotated dataset

Analyzing mAP_0.5, the highest value observed is 0.40437, as depicted in Figure 25 and enumerated in
Table 2, signifying that the model successfully detected and localized approximately 40% of objects in
the  images  with  a  high  degree  of  confidence,  as  determined  by  the  intersection  over  union  (IoU)
threshold of 0.5.

Figure 27: Object detection accuracy results of the trained model used on test images

As depicted in Figure 26, the overall performance of the trained model demonstrated success, achieving
the ability to detect multiple objects in an image with a detection accuracy as high as 75% for E. coli
colonies in the image.
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Figure 28: Counting results of the trained model used on test images

Additionally, the model not only detects E.coli bacteria but also counts them, with each line in the text
file shown in Figure 27 representing an E. coli colony.

However, when attempting to evaluate the model trained using the annotated dataset that underwent the
developed  framework,  the  researchers  encountered  several  challenges  that  prevented  obtaining
conclusive results:

 The training requirements were excessively demanding, as training the model with the base annotated
dataset alone necessitated a minimum of 19 to 24 GB of training resources. Incorporating the masks
generated from Watershed or Falling-Ball would further significantly increase the system's RAM and
GPU requirements that the researchers could not access.

 Modifying multiple YOLOv5 Model files to enable acceptance of binary images for training posed
considerable challenges. Unfortunately, the lack of documentation or guidance pertaining to such
modifications hindered the resolution of this issue.

Given these limitations and technical complexities, the desired evaluation of the model trained using the
dataset after applying the hybrid framework could not be successfully conducted.
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5. Conclusions and Recommendations
5.1. Conclusions
The present study aimed to achieve three primary research objectives. Firstly, it generated a dataset of
images  depicting  E.  coli colonies  on  agar  plates.  Secondly,  a  novel  framework  was  developed,
integrating the Watershed and Falling-Ball algorithms to create a hybrid image segmentation approach.
Finally,  the  YOLOv5  transfer  learning  model  was  trained  using  the  generated  dataset,  and  its
performance was evaluated.

The results  of the second research objective revealed that  the hybrid image segmentation algorithm
effectively  enhanced  the  accuracy  and  reliability  of  object  detection.  By  utilizing  the  Watershed
Algorithm to produce a visual mask and refining it through the Falling-Ball Algorithm, the framework
successfully  addressed issues such as  noise  and artifacts  in  the original  masks.  This  process  led to
improved identification and delineation of E. coli colonies, enhancing the overall performance of the
detection system.

Moving on to  the  third  research objective,  training the  YOLOv5 transfer  learning model  using the
generated dataset showcased promising outcomes. The model exhibited a precision score of 0.5890,
indicating high accuracy in positive predictions. Additionally, a recall value of 0.495 demonstrated the
model's ability to identify many positive instances within the dataset correctly. Furthermore, the model
achieved a mAP_0.5 score of 0.405, suggesting successful detection and localization of approximately
40% of  objects  with  high  confidence.  Consequently,  the  model  proved  proficient  in  detecting  and
counting E. coli colonies on agar plates.

In conclusion, this study made significant strides in automating bacteria colony counting by developing
a  comprehensive  framework.  The  integration  of  the  hybrid  image  segmentation  algorithm and  the
YOLOv5 transfer learning model demonstrated promising results, enhancing the accuracy and reliability
of  the  detection  system.  By  leveraging  the  power  of  image  analysis  techniques  and  deep  learning
models, this research advances automated bacteria colony counting methodologies, offering potential
applications in various fields such as medical research, microbiology, and environmental monitoring.
However,  it  is important to acknowledge the limitations encountered in training the model with the
dataset  that  underwent  the  hybrid  framework  due  to  resource-intensive  requirements  and  technical
challenges.  Future  research  efforts  should  focus  on  addressing  these  limitations  to  evaluate  the
developed framework's potential fully.

5.2. Recommendations for Future Work
Based on the findings and limitations encountered in this study, several recommendations for future
work can be proposed to enhance further the automated bacteria colony counting system and improve its
applicability.  These recommendations aim to address the identified limitations and explore potential
avenues for advancements in methodology and technology.

Dataset Expansion and Diversity
The current study generated a dataset of  E. coli colonies on agar plates; however, future work could
benefit from expanding the dataset by including images of colonies from various bacterial species and
different growth conditions. Incorporating diverse images would enhance the model's robustness and
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generalization capabilities,  allowing it  to accurately identify and count colonies in a wider range of
scenarios.

Hybrid Algorithm Refinement
Although the hybrid image segmentation algorithm showed promising results, further refinement, and
optimization can be explored. Future studies could investigate alternative algorithms or variations of the
Watershed  and  Falling-Ball  methods  to  improve  the  accuracy  and  efficiency  of  the  segmentation
process.  Additionally,  exploring other  noise  reduction and artifact  removal  techniques could further
enhance the quality of the visual masks generated by the algorithm.

Model Training with the Developed Framework
The resource-intensive  requirements  and technical  challenges  encountered  during  training  using  the
annotated dataset  that  underwent  the hybrid framework highlight  the need for  further  investigation.
Future work should optimize the training process by considering methods to mitigate the high RAM and
GPU requirements. Additionally, thorough documentation and guidelines on modifying the YOLOv5
model files to accept binary images for training would facilitate the integration of the hybrid framework
into the training pipeline.

More Performance Evaluation Metrics
While the current study assessed the performance of the YOLOv5 model using precision, recall, and
mAP_0.5 metrics, future research could consider incorporating additional evaluation metrics. Metrics
such as F1-score, intersection over union (IoU), and accuracy at various IoU thresholds would provide a
more comprehensive evaluation of the model's performance and enable a more nuanced analysis of its
strengths and weaknesses.

Integration of Additional Features
Expanding  the  capabilities  of  the  automated  system by  integrating  additional  features  could  be  an
interesting  avenue  for  future  work.  For  instance,  incorporating  the  ability  to  differentiate  between
different bacterial species or detecting and analyzing antibiotic resistance patterns within the colonies
would provide valuable insights for microbiological research and clinical applications.

Glossary

Petri dish A  shallow  glass  or  plastic  cylindrical  dish  is  used  to  cultivate
microorganisms.

Agar Agar is a gelatinous substance derived from seaweed commonly used
as a solidifying agent in microbiology laboratories to provide a solid
surface  for  microorganisms  to  grow  on  and  can  be  sterilized  by
autoclaving without being melted.

Agar plate An agar plate is a petri dish containing a layer of agar used to culture
microorganisms, providing a solid surface on which bacteria, fungi,
or other microorganisms can grow and form visible colonies.

E. coli A type of bacteria that is commonly found in the intestines of humans
and animals. Some strains can cause illness.
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Image segmentation The process of  partitioning a digital  image into multiple segments
(sets  of  pixels),  each corresponding to a  region of  the image with
similar properties.

Watershed algorithm A type of image segmentation algorithm that is based on the idea of
flooding a grayscale image from its regional minima.

Falling-ball algorithm An image segmentation algorithm is based on rolling a ball of a given
radius over an image and identifying the regions where the ball fits.

YOLOv5 A family of compound-scaled object detection models trained on the
COCO dataset.

YOLOv5 transfer learning 
model

Refers to the utilization of a pre-trained YOLOv5 model, developed
for a different but related task, as a starting point to train a new model
specifically for detecting and counting E. coli colonies, leveraging the
knowledge  learned  from  the  pre-trained  model  to  improve
performance and reduce training time and data requirements.

Hybrid algorithm A combination of two or more algorithms to achieve a better result
than using a single algorithm.

Binary mask A tool used in machine learning to remove some parts of the input or
output  data  during  training  can  help  prevent  the  model  from
overfitting  or  memorizing  the  training  data  too  well.  It  works  by
specifying which parts of the data should be removed or "masked out"
by setting them to zero and which parts should be kept.
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